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Choosing the
metric
« FairML book [6]

- Political implications
of the metric [7]

« Data minimization [8]

« Privacy auditng [9]

Choosing the
queries

« Classical random
sampling [10]

« Crafted datasets
. Active learning [11]

- Fairness by betting
[12]

Data collection

- Do we get
explanations? [13],
[14]

« Do we have access
to private API? [15]

. Can the platform
lie? [11] =
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A hypothesis
h:X — {0,1}

Hypothesis space
7 c {0,1}*

Audit metric

u(h,S) = P(EE| X € §,a) — P(E8| X € S, @)
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A hypothesis Assumptions

h:X — {0,1} 1. Auditor prior: H 1s known
Hypothesis space 2. Slelf;cconsmtencly:.onlci '
7 {0, 1}96 platform reveals 1ts labeling

of z, cannot change it.

Audit metric

p(h,S)=PEE|X € 5,a)-PEE[X €5, O)

4 ) 4 A

¥
answer y_i=h'(x_i) _

API h USER
_ W, \_ Y,

query x_1i
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H(S,h)={h e H :Yx e S,h(x) = h(zx)}
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H(S,h)={h e H :Yx e S,h(x) = h(zx)}
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p-diameter

Version space
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Research questions

Complexity (F, audit)
RQ1 d A such that =
Complexity (A, audir)

RQ2 Do these J{ exist in practice ?



A simple

case
Theorem 1: No need to aim

Shattering If 7 = {0, 1}x, then
hypothesis

class diam , F(h*,S) =2—(P(X €S | X, =1)

+P(X €S| X, =0)

Context

<

Framework
© A theoretical peek Intuition:

M Empirical study 1. Split the value of the p-diameter on S and S
Concluding remarks 2. Constuct the “optimal” hypotheses h' and h*
Bibliography 3. Express the result as a function of P(X € S | X4, =0 or 1)
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Theorem 2: Little Robert (informal)

Letd € {0,1}" be a dictionnary of memory m. Then, for
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p-diameter

memory (in % of dataset size)

Audit budget

10

= 100

300
800

Audit strategy

optimal

random
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m—a frue labels

2.0 o—e random labels |4
v w—x shuffled pixels
=15k rondom pixels |-
o gaussian
qV)
= 1.0
>
q0)

0.5

0.0

0 o 10 15 20 25
thousand steps

(a) Learning curves

Taken from [16] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding Deep Learning (Still)
Requires Rethinking Generalization”, Communications of the ACM, vol. 64, no. 3, pp. 107-115, Feb. 2021, dot:
10.1145/3446776.


https://doi.org/10.1145/3446776
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Definition 2: Benign overfitting on ¢ (informal)

JH exhibits benign overfitting with respect to c 1if

1. 3r* € H,¥D C X,|D| < d, error(h, D) = 0
2. error(h*, X) < e
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Definition 2: Benign overfitting on ¢ (informal)

JH exhibits benign overfitting with respect to c 1if

1. 3 e H,VD C X,|D| < d, error(h, D) =0

2. error(h*, X) <€

Corollary 1: Large models are difficult to audit

If H exhibits benign overfitting with respect to the
sensitive attribute, then (with |S| = |S

random ‘ )

vS,diam ,(h, S) = diam , (h, S;andom)




Research questions
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RQ1 d /A such that —
Complexity (F, audit)

= Yes !

RQ2 Do these J{ exist in practice ?



Metrics

« H:model (trees, GBDT, linear...) + set of

hyperparameters
Context + AuditDifficulty(K) = Eg[diam,, (h*, S)]
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Audit Difficulty

perceptron @  linear tree % gbdt * Hopt
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COMPAS StudentPerf

AdultIncome

perceptron € linear tree

*

®  obde

Cost of Exhaustion
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[t seems [...] a platform could always game the system [...]
without sacrificing a lot of accuracy of the model learnt.

— Anonymous reviewer
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