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ABSTRACT

Machine learning-based prediction services are now widely deployed across in-
dustries by companies, governments, and individuals. Yet, these services often rely
on a complex Al supply chain, whose components (training data, models, infra-
structure), while critical to their performance, are partially or completely hidden
to the final users. Thus, to an external user or regulator, these prediction services
appear as black-boxes, complicating their evaluation and opening avenues for
manipulations. In the presence of deceptive model providers, this thesis aims to
understand the fundamental limits to black-box auditing and designing protocols
to provide guarantees beyond the black-box interaction model. This manuscript
presents three contributions towards that goal. First, I present a formalization of
this quest for the minimal assumption beyond the black-box as a prior construction
problem and provide a new audit method leveraging the labeled data available to
the auditor. Then, I study the benefits of requesting the hypothesis class used by
the platform to inform the audit. Finally, in an attempt to cheaply detect post-audit
attacks, I introduce a new model fingerprint baseline and theoretical analysis to
detect model change.
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RESUME EN FRANCAIS

Les algorithmes d’apprentissage automatique ont trouvé de nombreuses applica-
tions dans nos vies. Des algorithmes de traitement d’image permettant a nos
smartphones de prendre des photos parfaites malgré des capteurs minuscules,
a accélération des prévisions météorologiques, en passant par I’assistance a la
rédaction, la prédiction de fraude, ou la détection de pathologies, I’apprentissage
automatique est utilisé autant par les entreprises, les gouvernements que par le
grand public. L’observation de son déploiement massif, particulierement au travers
du paradigme du « Machine Learning as a Service » (MLaaS), met en lumiére un
paradoxe structurel : alors que ces systémes régissent des décisions a fort enjeu, ils
demeurent, pour la majorité des acteurs, des «boites noires » hermétiques. Pour
I'utilisateur final ou le régulateur, I'interaction se réduit a une interface d’entrée-
sortie, occultant totalement les données d’entrainement, I’architecture du modéle,
ses parameétres internes et ses objectifs.

Dans ce contexte d’opacité, 'audit des systemes d’apprentissage automatique
émerge comme un instrument indispensable de gouvernance. Il se définit
comme une procédure d’évaluation méthodique et indépendante visant a vérifier
la conformité d’'un systéme d’apprentissage automatique avec un ensemble
d’exigences prédéfinies, qu’elles soient techniques, éthiques ou réglementaires. Le
point de départ de ces travaux de these est 'adoption d’une approche d’audit qui
prend en compte le comportement potentiellement antagoniste du fournisseur de
services, rompant ainsi avec I’hypothése de coopération qui sous-tend implicite-
ment la majorité des protocoles d’audit actuels. En effet, dans un environnement
économique concurrentiel, soumis a des cadres réglementaires stricts tels que
I’AI Act européen, un fournisseur dispose d’incitations rationnelles a adopter des
comportements stratégiques, voire trompeurs.

Ce manuscrit adresse donc ce scénario du pire cas : comment garantir la
fiabilité, ’équité et la performance d’un algorithme lorsque son concepteur tente
activement de dissimuler ses défaillances ? Bien-entendu, si I’auditeur ne dispose
d’aucune autre information ni aucun autre acces au systéme qu’au travers de
requéte-réponse, il n’a aucun moyen de détecter quelconque manipulation de la
part du fournisseur de services. Pour aborder ce probleme, tout au long de cette
thése nous nous efforcerons de répondre a la question
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Afin de dépasser le modéle de I'audit en boite noire, de quelle informa-
tion supplémentaire I’auditeur a-t’il besoin pour obtenir des garanties
de validité de ses mesures?

Chapitre 1: Introduction

Ce chapitre introductif pose le contexte général de la these : 'omniprésence des
services de prédiction basés sur 'apprentissage automatique dans des secteurs
critiques et la complexité croissante de leur chaine d’approvisionnement. Nous ef-
fectuons un bref rappel des notations et pratiques régissant la création de systemes
d’apprentissage automatique. Ensuite, ce chapitre détaille les différentes étapes
d’un audit: la définition des objectifs, les mesures utilisées et les différents niveaux
d’accés au systeme. Enfin, nous présentons les motivations qu'un fournisseur
aurait a manipuler un audit et le modele de sécurité correspondant: un fournisseur
qui manipule les réponses du modéle sur I’ensemble d’audit pour paraitre équitable
et performant.

Chapitre 2: A la recherche d’un a priori

Dans ce deuxieme chapitre, nous abordons la formalisation de ’audit comme
un probléme de construction d’une connaissance a priori pour 'auditeur. Face a
I'impossibilité théorique de garantir la conformité d’'un modéle boite noire sans
hypothéses supplémentaires, nous introduisons le cadre de 1’audit avec a priori.
Nous illustrons notre proposition a travers l'utilisation de données étiquetées dont
disposerait I'auditeur comme source de cet a priori pour contraindre I’espace des
modeles possibles et détecter les manipulations.

Nous développons une analyse théorique démontrant que la connaissance de la
distribution des données permet de borner la capacité de nuisance du fournisseur.
Nous introduisons le concept d’« inéquité dissimulable », qui quantifie 'ampleur
de I'inéquité de traitement qu'un fournisseur peut cacher tout en satisfaisant les
contraintes de I'audit.

Sur le plan empirique, nous évaluons cette méthode sur des jeux de données
réels (comme CelebA et ACSEmployment). Nos expériences montrent comment
I'inéquité dissimulable évolue en fonction du budget de requétes de l'auditeur
et des différentes stratégies de manipulation du fournisseur. Nous mettons en
évidence que si 'acceés a un jeu de données étiqueté renforce l'audit, il existe
toujours une marge de manceuvre pour le fournisseur, qui diminue a mesure que
l’auditeur acquiert plus de données.
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Chapitre 3: Connaissance de la classe d’hypotheéses

Ce chapitre examine une hypotheése alternative pour renforcer I’audit : la connais-
sance par ’auditeur de la classe d’hypothéses (la famille de modeéles et ’algorithme
d’entrainement) utilisée par le fournisseur. Nous cherchons a déterminer si cette
information permet de concevoir des audits plus robustes contre les manipula-
tions, notamment via des stratégies d’audit actif ou 'auditeur choisit ses requétes
en fonction des réponses précédentes de la plateforme.

Nous démontrons que pour de nombreuses classes de modeles, aucune stratégie
d’audit actif ne surpasse 1’échantillonnage aléatoire simple. Nous établissons un
lien formel entre la manipulabilité d’une classe de modéles et sa capacité (mesurée
par la complexité de Rademacher). Plus un modéle est complexe et capable
d’apprendre des motifs variés, plus il est facile pour le fournisseur de dissimuler
son comportement réel sans étre détecté par 'audit.

L’analyse est illustrée par I’étude des modeles «dictionnaires » et étendue aux
modeles classiques (arbres de décision, modeles linéaires, réseaux de neurones).
Les expériences confirment que pour les modéles modernes a grande capacité,
malgré la connaissance de la classe d’hypotheses par 'auditeur, le fournisseur peut
aisément tromper l'audit. Le colit en termes de performances pour le fournisseur
de tromper I'audit reste négligeable, ce qui souligne les limites de cette approche
pour la régulation des systemes d’IA complexes.

Chapitre 4: Surveillance des changements de modéle

Face aux limites de 'audit ponctuel identifiées dans les chapitres précédents, nous
nous tournons dans ce chapitre vers la surveillance continue via I’empreinte de
modele (fingerprinting). L’objectif est de détecter sile modele déployé a été modifié
aprés ’audit par le fournisseur, par exemple pour réduire les cotits d’exploitation
ou favoriser un groupe d’utilisateurs.

Nous proposons le cadre d’analyse QuRD (Query, Representation, Detection) pour
déconstruire et évaluer les méthodes de fingerprinting existantes. Cette analyse
révele que la littérature actuelle souffre de faiblesses méthodologiques : les bench-
marks utilisés sont souvent triviaux et les méthodes complexes basées sur des
exemples adversariaux s’averent fragiles.

Nous introduisons une méthode de référence simple mais efficace, nommée AKH,
qui performe aussi bien, voire mieux, que les techniques de I’état de I’art sur la
plupart des taches de détection de vol ou de modification de modéle. Les résultats
expérimentaux sur des benchmarks comme ModelReuse et SACBench montrent
que des stratégies simples d’échantillonnage sont souvent suffisantes pour détec-
ter les changements. Nous concluons que la complexité des méthodes actuelles
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n’est pas justifiée et recommandons 'usage de bases de référence robustes pour
les futurs travaux de surveillance.

Chapitre 5 : Conclusion

Le dernier chapitre synthétise les apports de la thése. Nous avons montré que
I'audit boite noire pur est intrinsequement limité face a des adversaires capables
de manipulations. Les tentatives pour renforcer ’audit par la connaissance de
la classe d’hypotheses se heurtent a la grande capacité des modeles modernes,
qui permet de cacher des comportements déviants avec un colit minime pour le
fournisseur.

Nous discutons des implications de ces résultats pour la gouvernance de I'TA.
Puisque ’audit technique seul ne suffit pas a garantir la fiabilité, nous suggérons de
déplacer la charge de la preuve vers les fournisseurs (par exemple via des certificats
cryptographiques, bien que cotiteux) et de réintégrer les utilisateurs dans la boucle
de gouvernance. Enfin, nous élargissons la perspective aux dynamiques de pouvoir
inhérentes aux systémes algorithmiques, soulignant que les solutions techniques
doivent s’accompagner d’une réflexion politique et sociale sur le controle des
infrastructures numériques.
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INTRODUCTION

Snowball conjured up pictures of fantastic machines
which would do their work for them while they
grazed at their ease in the field or improved their
minds with reading and conversation.

— Animal Farm, Orwell

From the image processing algorithm enabling our smartphones to take pixel-
perfect pictures despite tiny sensors [5] to speeding-up weather predictions [6, 7],
and providing writing assistance [8], Machine Learning (ML) systems have found
ways in our pockets and in our lives. Because it allows to analyze and use the huge
amount of data harvested along the development of the internet, Artificial Intelli-
gence (Al) has enabled technologies that would not have been feasible otherwise.
Among them, we could cite speech recognition, translation, information retrieval,
object recognition, recommender systems, large scale biometric identification or
targeted online advertising.

Despite the growing social and individual impact of the decisions made by these
ML systems, the data and proprietary algorithms that run them are obscured by
their model providers, presented to the public as a black-box that requires no user
understanding. This lack of transparency creates an accountability gap. Without
insight into internal workings, decision logic, and training data, it is virtually im-
possible for users or regulators to verify claims of performance, detect harm, or
assign liability for negative outcomes. Thus, the responsibility to scrutinize these
ML systems, hold their model providers accountable and raise public awareness
on how to use them has fallen on scientists, journalists and regulators. In this
setting, the present manuscript studies audits as a crucial tool to hold ML systems
providers accountable to their users and society.

A Machine Learning audit is an independent, systematic verification of claimed
properties of a ML system. ML audits have been used to verify claims on
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performance metrics and disparities [9], privacy leakage [10] and safety measures
[11]. However, effective auditing comes with its own challenges. It requires the
auditor to collect data that is both representative of the system’s actual use case
and relevant to the tested property. Moreover, auditors have limited access to the
studied ML systems, often restricting them to input-output queries, interacting
with the system as a black-box. Finally, the complex nature and massive scale of
modern ML models makes it extremely challenging to understand the causes of
discrepancies or undesired outcomes in predictions, even when observational data
is available.

As if the auditing task was not complicated enough, the existing ML auditing
literature has overlooked a critical factor: model providers have incentives
to evade, cheat or manipulate ML audits. Because of the large data and
compute requirements [12], emerging data licensing practices [13], and strategic
partnerships [14, 15], companies providing ML systems are incentivized to act as
monopolistic profit machines [16]. As a result, thanks to its monopoly position, the
Al system provider can present whatever output they want to their users without
risking churn. It thus becomes rational to alter what is presented to the auditor to
pass the audit without having to modify the system exposed to the users. In the
end, the provider only has to detect the audit (e.g. by detecting the use of public
evaluation datasets, detecting specific IP addresses or looking for specific query
patterns) and manipulate what is exposed to the auditor (e.g. alter the data,
predictions or internal documents sent to the auditor) to pass the audit without
having to modify the system exposed to the users.

Even forcing the provider to grant the auditor full access to the ML system would
not completely alleviate manipulations: how would the auditor know if they are
not in a sandbox? Therefore, in this manuscript, I seek a sensible trade-off: con-
tinue to treat the provided APIs and user interfaces of the Al system as black-boxes
but look for additional information to help interpret and detect manipulations
of the audit results. As obtaining this additional information can be costly for the
auditor, one of the challenges will be to understand how much is needed.

In light of how easy it is to manipulate ML audits and how important they are
to hold ML providers accountable, the following question will guide us along the
manuscript.

To go beyond the black-box model, what minimal additional informa-
tion should the auditor request to achieve meaningful audit validity
guarantees?

The purpose of this chapter is first to establish some background and notations
I will use to describe ML systems (Section 1.1) and their evaluation via ML
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Figure 1.1: The Machine Learning pipeline and examples of challenges asso-
ciated with each step.

audits (Section 1.2). Then, I will detail how the interactions between the auditor
and the model provider can be weaponized by the model provider to game the
audit (Section 1.3). Finally, I will succinctly present the contributions of this thesis
(Section 1.4).

1. A primer on Machine Learning systems

The term Machine Learning was coined by A. Samuel in 1959 to describe computers
playing each other to learn checkers [17]. The reason we turn to Machine Learning
is to transform data into predictions, e.g. about the weather, the next word I
will type on my keyboard or the presence of a cat in an image. There are a lot
of moving parts in modern ML systems: prediction often go through a series of
filters and business rules before finally reaching the user, the training data is
continuously collected, the model providing the predictions is regularly retrained
and the quality of predictions is monitored. For simplicity, I will use the following
convention: the predictor will refer to the end to end ML system, whereas the model
will designate the single, instantiated and trained ML model. For example, in a
product that detects hate speech, there might be a model to embed the text into
vectors, a classifier trained separately and a layer to abstain when the confidence is
too low. The predictor is the entire pipeline, while embedding model, the classifier
and the uncertainty layer are all different models.

The practice of predictive model building can be stylized in four steps: 1) data
collection, 2) architecture and loss choice, 3) training and evaluation and finally 4)
model serving. The purpose of this section is threefold: to define notations used
throughout the manuscript, to provide a general background on the craft of train-
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1. A primer on Machine Learning systems

ing ML models, and to highlight well-known pitfalls and systemic vulnerabilities
that can arise at each of the four stages.

1.1. Data collection

The first step to create a predictor is to collect data related to the problem at
hand. This data could be images, texts, physical measurement, anything that can
ultimately be represented as numbers or vectors. Each data point z is paired with
a target prediction y. The space of all possible points is called the input space X,
the space of all targets, the output space 5.

In supervised learning, the target is a label or value, also called ground truth,
observed when collecting the data point. It describes the observed outcome for
the piece of data if refers to, e.g. the animal pictured in the image, or the temper-
ature associated to the measured sensor voltage. Otherwise, the target could be
the data point itself (e.g. in generative modeling), a transformed version of the
data point (e.g. in machine translation) or even a textual description (e.g. in image
captioning). Once collected, the data is split into a train dataset D, ,;, C X x ¥
that will be used to build the predictive model and a test dataset D,., C X x ¥
that will be used to evaluate it.

How the data is collected, its quality, and diversity directly affects the downstream
performance of the predictor [18] but not only.

Privacy The collection of Personally Identifiable Information (PII) in the training
data exposes the privacy of people, even if the data is not shared outside of the ML
system. In fact, the predictions can be used to reconstruct private information in
the training data [19], guess if some person was in the training data [20] or even
discover the name of a person from a portrait image [21].

Fairness Biases in the data can create large performance disparities in the trained
predictor. For example, computer vision models are very good at learning short-
cuts [22]: if all images of cows are with a blue sky background then any cow image
in the UK. will not be correctly classified.

Unsafe content With the imperative to build ever larger datasets, from all
corners of the Internet, filtering harmful content such as Child Sexual Abuse Ma-
terial (CSAM) [23] becomes crucial but remains difficult. Worse, against common
intuition, just scaling the dataset size can actively increase racial and gender biases
of downstream predictions [24].

1.2. Model architecture and loss

Once the model provider collected the data, they have to choose how to generate
predictions and what a good prediction is. How to generate predictions is specified
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by a model architecture or hypothesis class. A model architecture is a parametrized
class of functions

H={hy: X —>Y|0€c 0O} (1.1)

in which functions, parametrized by a set of parameters 6 € O, take a data point
as input and return a prediction as output. The quality of a prediction is specified
by the model provider via a loss function

L:H x X xY =R, (1.2)

The loss takes a prediction function hy € J(, a data point x € X and a target
prediction y € ¥ and returns a positive value I(h, z,y) that is low if the predic-
tion hy(x) is close to the target y and high otherwise. Finally, to estimate the
performance of its prediction function Ay, the losses of individual data points are

rain ) .

aggregated into a single value called the empirical risk L(hgy, D,

Definition 1.1 (Empirical risk) Given a predictor h : X' — Y, a dataset D C X x
Y and a loss function l, the empirical risk is defined as

1
L(h97Dtrain) = ‘D— Z l(h@,.’l},y).
t

rain ‘ (m7y)eDtrain

The choice of loss function defines how the optimal model behaves, and, as with
the data, the choice of loss and architecture have an impact beyond the perfor-
mance of the resulting predictions.

Average case Choosing to minimize the average loss, while mathematically
convenient, can be harmful when there are identifiable groups in the data (e.g.
genders, races, income, location ...). In fact, even if a model has a low empirical
risk, there might exist individuals or groups on which the model perform much
worse than the average [25].

Memorization Modern chat-bots are prone to memorization. For example,
prompting Llama 3.1 70B with the beginning of a sentence of Harry Potter will
make it regurgitate large parts of the book [26]. It turns out that the number of
parameters of the chosen architecture plays a crucial role in how much data it
will memorize [27]. This has implications on intellectual property: model providers
argue that collecting data to create a model is fair use, i.e. the model is a substantial
transformation of the data. However, if the model regurgitates the data easily, it
might be considered as a copy [28].

1.3. Model training

Having collected the necessary training data and chosen a suitable architecture
and loss function, the model provider now has to find a good choice of parame-
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1. A primer on Machine Learning systems

ters § € © according to its loss function. Choosing “good” parameters values 6*
amounts to minimizing the empirical risk on the train data.

0" € arg meinL(hOv Dtrain) (13)

Since deriving the exact analytical solution for 6* is infeasible in general, the
parameters are computed using variants of gradient descent. First introduced
by A.-L. Cauchy to solve systems of equations [29], gradient descent iteratively
refines an initial guess 6, towards the optimal solution #*. In the convex setting,
i.e. when the empirical risk is convex in the parameter 6, theory tells us that we
are guaranteed to reach the global optimum using gradient descent. See [30] an
in-depth overview of convergence results.

However, the massive size of the train set D, ,;, makes computing the risk gradient

rain
VL prohibitively costly in terms of memory. Modern optimization methods thus
rely on improvements of the Stochastic Gradient Descent (SGD) [31] algorithm.

To avoid computing V4L, the idea is to sample a batch B C D,,;, of b points

rain
and compute the gradient V4 L(hy, B). The choice of optimization method is not
benign. Not only it requires tuning important hyperparameters (e.g. learning rate

or the batch size b), it also carries fairness and security risks.

Bias amplification Models reproduce the bias in the training data, they also
exacerbate it. It has been shown that the imbalance, a.k.a. the difference in the
number of training sample from two groups, slows the training dynamics of the
minority group [32]. As a result, classical training techniques such as gradient
normalization and early stopping favor even more the majority class, almost
suppressing the impact of the minority on the final model [33].

Poisoning attacks One way to guarantee an unbiased SGD estimate of the

full gradient is to sample the batches B uniformly from D, ,; . However, just by

rain*
reordering data batches, an adversary can insert any behavior in the model (i.e.

poison it) without altering the data itself or the rest of the training procedure [34].

1.4. Model serving

Once all the data, architecture and training techniques have been chosen, the
challenge is to reduce as much as possible the cost of serving the predictor. With
models sizes continuously increasing, optimization of the serving phase, via com-
binations of model sparsity [35] or quantization [36] has become more common.

All of these operations need to be tuned correctly as they can greatly affect the
performance of the resulting predictor. In addition, even if the model was perfectly
trained and thoroughly evaluated, the data it was based on might become outdated
due to distribution shifts [37]. It requires continuously collecting new data and
re-training or adapting the model. Finally, at this model serving stage anybody
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can finally access the model or its predictions, which involves an additional set of
challenges.

Model misuse The content produced by generative models have reached a dis-
turbing level of fidelity with original content. Without citing the litany of potential
misuses of this fidelity, one example is the generation of non-consensual intimate
images [38], sometimes, by teenagers [39]. Preventing such misuse is not only
technically difficult, it also requires a discussion on what to censor and who takes
the decision. A discussion that large model providers have for now tried to elude.

Model stealing Often, model providers do not return only raw predictions.
When serving the model via an Application Programming Interface (API), they
also include other useful information such as the model confidence or even the
prediction scores (the score the predictor assigns to each possible prediction). All
this information can be exploited by malicious users to steal the functionality or
the behavior of the predictor [40, 41], which is hard to defend against without
decreasing the utility of the victim model [42].

Fraudulent provider In the two previous points, the risk came from the user
abusing the predictor, this last risk comes from the provider. Because hosting and
serving larger and larger ML models is costly, model providers have incentives to
overcharge users. For example, they could present a quantified or altered model
in place of a full-precision model [43], use lower-grade inference hardware [44],
or in the context of chat-bots, exploits the subtleties of tokenization to charge the
user more tokens than they used [45].

97

In the last four subsections, I briefly introduced the craft of ML system creation,
brushed on the complexity of creating practical and useful predictors, as well as
some of the risks introduced by these systems. In the next section, I will address a
pressing question that I have purposefully eluded until now: how and who should
evaluate those predictors?

2. Machine learning audits

Selling Machine Learning products is a balancing act between performance, cost
and security. Thus, to have their interests considered, users need to be able to
weight in on the scale. To that end, as independent evaluations, audits can form
a base on which users and regulators can ask the platform to rectify their system
or, in the absence of action, take the matter to court.

1. Birhane uses the terminology Al audit, when we used ML audit. Both describe audits of systems
that provide predictions, irrespective of the actual algorithms, Al or ML, behind those decisions.
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2. Machine learning audits

Definition 1.2 (ML audit [2]) A ML" audit is defined as any independent assessment
of an identified audit target via an evaluation of articulated expectations with the
implicit or explicit objective of accountability.

The goal of this section is to dissect this definition and provide some context on
ML audits.

2.1. Why? “the objective of accountability”

Audits have a long history [46, 47], which has only recently been joined by algo-
rithmic audits [48]. Original form of audits served as a check against accounting
fraud, they held the citizen in charge of monetary transfers accountable [47].

Modern ML systems now influence our lives beyond financial considerations.
Some, such as social benefits fraud detection systems, impact people directly.
Some, as RealPage [49], affect society indirectly, by acting as a collusion mecha-
nism between landlords leading to global rent increase. The objective of ML audits
is to detect and publicize these effects in order to incite model providers to correct
them to avoid bad publicity.

In addition to incentives for better systems by targeting the reputation of model
providers, audits are also a ML governance tool [50]. The European Union (EU)
has had directives (i.e. goals that have to be implemented by member states) that
specifically address the notion of equal treatment between individuals since the
early 2000s. Recognizing the ever increasing autonomy delegated to ML systems,
the EU has produced a digital regulation (i.e. binding acts that apply as is across the
EU) package, the Digital Services Act (DSA) [51], Digital Markets Act (DMA) [52]
and Al Act [53], to face the new risks they introduce. The enforcement of these
three regulations revolve around the idea of regular risk assessments, with more
stringent requirements for services with higher risks. In this setting, ML audits act
as tools for regulators to enforce these regulations. Given the legal consequences
of non-compliance, it it thus crucial to ensure the robustness of ML audits.

2.2. What? “the evaluation of an identified target”

Nobody enjoys being reduced to a number, let alone aggregated with their peers
into a bar plot. Yet these are the two fundamental assumptions underlying how
we evaluate ML systems: we model users as a distribution and we summarize their
experience through metrics.

Metrics can be grouped into two categories: functional metrics, which measure
performance, and non-functional metrics, which measure constraints.

Functional metrics Functional metrics measure how well a system achieves
its goals. For predictors, they measure what kind and how many mistakes the
model made. Among them are accuracy (the proportion of correct predictions),
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True Positive Rate (TPR) (proportion of correct predictions among predictions that
should have been positive), False Positive Rate (FPR) (the proportion of wrong
predictions among predictions that should have been negative).

Definition 1.3 (A few functional metrics) Leth : X' — Y be a predictor, and (X,Y)
random variables following the joint (input, target) distribution. For TPR and FPR, h
is assumed to be a binary classifier.

Accuracy(h) =P(h(X) =Y)
Brier(h) =E[(h(X)—Y)?]
TPR(h) =Ph(X)=1]Y =1)
FPR(h) =P(h(X)=1|Y =0)

Non-functional metrics Having satisfactory performance is a requirement for
a predictor to be released. However, a broad range of other factors influence the
useability of a predictor in practice. These factors are grouped under the umbrella
of non-functional metrics. Common examples are robustness, bias or privacy; in
Definition 1.4 I introduce three fairness metrics for classification. For a broader
overview, the reader can refer to [25].

Definition 1.4 (Group fairness metrics) Assume each input point x € X can be
associated to a group g € G. Let h : X' — Y be a predictor, and (X,Y, G) random
variables following the joint (input, target, group) distribution.

e Demographic Parity is a measure of independence [25] between group member-
ship and prediction.

DParity(h) = P(A(X) =1 | G =1) —P(h(X)=1| G = 0)

e Equalized Odds is a measure of separation [25], i.e. independence of the predic-
tion and the group conditioned on the targett € Y.

EOdds,(h) = P(h(X)=1|Y =¢,G =1)
—P(A(X)=1|Y =¢t,G =0)

 Group Calibration is a measure of sufficiency [25], i.e. independence of the target
and the group, conditioned on the predictiont € Y.

GCal,(h) =P(Y =1 | h(X) =t,G = 1)
~P(Y =1 | h(X)=t,G = 0)

The audit dataset Definition 1.3 and Definition 1.4 are defined in terms of
probabilities with respect to an input, target, and group distribution (that we will
call D). However, in practice, these probabilities are not directly accessible during

the audit. Thus, to run the audit, an evaluation dataset D,

o5t 1S sampled from D.
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Figure 1.2: The three actors of an audit. The user gets utility from the
ML system via the model predictions, measured by the loss I. The model
provider gets utility proportional to its number of users. The auditor’s
goal is to check the performance of the predictor h for the users and the
performance disparities between groups (highlighted in orange). The easiest
case would be the auditor being able to ask users for interaction data (
arrows). However, for privacy and computational reasons, they instead scrape
or query the predictor directly (--» arrows).

Then, the entity running the evaluation collects the predictions of A on D, and
aggregates them into a quantity that should be close to the true value of the metric.
This poses an issue for external audits: how can we be sure that the collected data
follows the distribution 2D assumed by the metric?

2.3. Who, and for whom? “an independent assessment”

The audit game gathers three players: the user, the model provider and the auditor.
They all have different goals, different access and interactions with the predictor
and different background knowledge about the task solved by the predictor. Before
I describe the different access and interaction levels, let me introduce the three
protagonists (pictured in Figure 1.2).

The user is any party (individual or organization) that derives utility from the
predictor provided by the model provider. This includes active users, who initiate
prediction requests (e.g., submitting queries to a model), and passive users, who
experience the consequences of predictions without direct engagement (e.g.,
targets of algorithmic decision-making). In two-sided markets, such as digital
marketplaces, the user role may extend to both buyers (benefiting from predictive
recommendations) and sellers (gaining exposure through the predictor’s output).

The model provider refers to the entity hosting the predictor. It could be the
entity who built the predictor, collected the training data, but can also be just a
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Figure 1.3: Examples of different access levels to the data, predictions and
model used in the creation of a ML system.

link in a larger ML supply chain. In this manuscript, we assume the model provider
has full access to the predictor, and in particular to its code, weights and training
data. The model provider sells predictions and is rewarded in proportion to the
perceived accuracy of its predictions.

The auditor refers it the party that seeks to evaluate the predictor provided to the
users. It includes journalists, auditing firms, regulators or even user collectives.
Because of limited resources and knowledge, users cannot all run a full audit each
time they suspect the predictor of wrongdoing. Therefore, the auditor serves as
an agent representing the interests of the user in hope that the greater resources
and expertise of the auditor will force the model provider to act more than in the
case of a single user.

Access and interaction The studied predictors are often behind APIs or
graphical interfaces, exposing very little of their inner workings. Because of the
competition between actors and the perceived security risks the default is to
disclose as little information as possible to the public and to the auditors. Yet, while
users might only receive the raw predictions, auditors often have the possibility to
request confidence estimates or prediction scores. To distinguish different types
of access to the ML system, I list the different nuggets of information the model
provider release in Figure 1.3.

In addition to what can be accessed, how it can be accessed determines which
properties of the predictor can be verified and which cannot. For example, the
types of analysis the auditor will conduct if they only has access to logged (query,
prediction) pairs, will be different than if they could query the predictor with any
input. Thus, how some information can be accessed defines the interaction model
between the auditor and the model provider. Some examples of interaction models
are listed in Figure 1.4.

Now, I review a few examples of common (access, interaction) combinations
studied in the literature and this manuscript. The first one is the black-box audit.
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Interaction Description

I1: Sampling The oracle chooses a random point in z € D and
returns it or the prediction h(z) to the caller

I2: Conditional sampling The caller specifies a subset S of the dataset D, the
oracle chooses a random point z € S and returns it
or the prediction h(z)

I3: Query The caller specifies a query x and the oracle
returns the prediction h(x)

I4: Full The caller has access to the entire dataset D and to
the weights of the predictor i

Figure 1.4: Examples of different interaction models to access a predictor h
or dataset D. The interaction is expressed between a caller and an oracle that
mediate the access to the object.

Definition 1.5 (Black-box audit) An audit is said to be a black-box audit if the
auditor only has query access (Figure 1.4, 13) to the raw predictions (Figure 1.3, P2)
of the studied predictor.

To describe relaxations of the black-box audit model, the community has found a
plethora of, sometimes creative, variations of the black-box. Some of them appear
in [54]: black-box (Definition 1.5), grey-box (I3 + P3 + M2), white-box (I4 for all
objects in Figure 1.3), de-facto-white-box (same as white box but with copyright
protection) or even outside-the-box access (same as grey-box + D2). To avoid
talking about shades of grey and strange boxes, we will only use the term black-
box as defined in Definition 1.5 and explicitly mention the additional information
given to the auditor using terms defined in Figure 1.3 and 1.4.

The accessible parts of the ML system and the allowed interaction constrain
the properties an external auditor will be able to audit. For example, privacy is
a property obtained from the training procedure: it requires full access to the
training pipeline (D3+M4) and hypothesis class (M2). On the other hand, measuring
properties such as robustness, performance or fairness only require query access
to the final predictor (P2 or P3) but can be much more efficient if the auditor has
more access to the model weights or training data.

The question “what minimal access” is required for ML auditing is crucial to
inform public policy and governance schemes [55] to target what information to
request from model providers. One contribution of this manuscript is to make
some progress towards answering this question.
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2.4. When? The four steps of Machine Learning audits

A ML audit is not just a matter of writing a Python script to evaluate the predictor
behind and send the cavalry if the performance is too low. In fact, the computer
scientist part might be the easiest one. Before even starting the audit, the auditor
must know what to look for, think about how to measure it and the potential source
of errors. As I will discuss in the next section, these choices are all potential targets
that can be manipulated by the model provider to evade the audit. Thus, the goal
of this section is All in all, ML audits can be divided in four phases: reconnaissance,
systematization, measurement and monitoring.

During the reconnaissance phase, the auditor monitors, looks for and gathers
initial evidence about the ML system. A first mechanism consists in collecting
reports and complaints from users [56] or model providers themselves [57], then
run continuous tests to detect if groups of the population experience issues more
often than others. An alternative, implemented by the Organisation for Economic
Co-operation and Development (OECD) [58] and the Responsible Al Collaborative
[59] is to monitor news coverage on Al and classify the content using Natural
Language Processing (NLP) techniques to detect incidents and hazards.

During the systematization phase, the auditor articulates a specific question and
a corresponding specification (i.e. metrics and audit dataset) to test. To continue
our example, the auditor might ask “is this specific report an outlier or is there a
systemic issue?” by testing if the demographic parity of the predictor is below a
given threshold. If the auditor has access to users, they can record the interactions
of the users with the predictor as in [60]. When impossible, the auditor has to
resort to variations of sock-puppet audits [61] or use public datasets to build an
audit dataset. The design space at this stage is very large, the interested reader can
refer to [62] for an overview of algorithm audits.

During the measurement phase, the auditor interacts with the model provider to
gather the predictor outputs and system information required by the verification
process. For example, the auditor might interact with the API to estimate the
demographic parity and request additional information to the model provider
to determine if bias mitigations measures are sufficient. This phase is critical to
mitigate inconsistencies and blind spots in the data. To to so, it is important to
gather as much information as possible, via different data sources [63], additional
model artifacts [64] or through specific protocols that guarantee the integrity of
the data and model [65].

During the monitoring phase, the auditor continues the interaction with the
model provider and its users. It is important, both to ensure that the model provider
took the necessary steps to address the shortcomings surfaced by the audit if any,
and to check that the predictor or context does not drastically change, which would
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require a new study. In the fairness example, the auditor would either pressure the
platform into improving its system and continue measuring demographic parity
to check that they do. While this has not yet been explored in the context of ML
audits, tools range from model change detection (has the model changed?) [66,
67] to distribution shift detection (has the users’ population or behavior changed?)
[68, 69].

Each of these phases encompass their own challenges. Chapter 3 and Chapter 2
are concerned with the robustness of the measurement phase to deceptive model
providers while Chapter 4 introduces a simple and efficient baseline for the moni-
toring phase.

2.5. On the user distribution

In this last subsection, I want to take a few lines to reflect on convenient assump-
tion of an underlying user distribution and the issues it causes to ML auditing. The
notion of “a probabilistic distribution determined arbitrarily by nature” [70] from
which examples are drawn was introduced to the learning community by Valiant
in 1984. Valiant’s goal was to separate concepts that are computationally learn-
able using examples from concepts that would require too much computation to
learn. The central notion of learnability is generalization: how does the predictor
perform on examples not seen during training ?

Definition 1.6 (Generalization gap [3]) Let D be a distribution on input, target
pairsin X x Y, andl: H x X x Y — R a loss function. The generalization gap
of a predictor h : X' — Y with respect to a dataset D C X x Y is defined as

A = E(w,y)wﬂ)[l(h,x,y)] o L(h7D)

gen

When D is the training data and 2 is the distribution of new data, the general-
ization gap describes how representative the training error is of the real error on
and D,

tes

new data points. Assuming that both the training data D, . come from

rain
the same distribution 2 allows to leverage concentration bounds to upper-bound
the generalization gap A,,, by a function of the error on the training data and
thus estimate the performance of the predictor on new data without looking at the

performance on a test set.

In the context of ML auditing, assuming that individual users can be represented
as feature vectors drawn independently from a fixed joint probability distribution
allows to reason about audit validity. Even a day, a month, or a year after the audit
was conducted, as long as users can still be viewed as sampled from the same
distribution, concentration bounds can be used to prove that the conclusions of
the audit continue to hold.

36



Chapter 1. — Introduction

Unfortunately, neither the auditor or the model provider have explicit description
of such user distribution. Of course, there exists methods to test if a distribution
has changed and if it has an impact on the predictor’s performance [71] but in
practice, these methods are only capable to detect change that were anticipated
during their inception [68]. Does this mean that companies are bound to spend
millions of euros every year on the services of audit firms even if they made no
substantial changes? I do not have a definitive answer. In this manuscript, I assume
that the users (or their behavior) does not significantly change and focus on the
(potentially deceptive) changes of the predictor.

3. Audit manipulations

All the above discussion on how to audit ML systems and what access levels
and interactions are required assumed a cooperative model provider. However,
building powerful, fair, private and robust systems is hard. It involves complex
tradeoffs that depend not only on technical constraints but also on the goals and
policies of the model provider. Thus, when building such a system is too costly or
when the model provider would rather not expose their true goals and policies, it
might be easier to cheat.

Definition 1.7 (Audit manipulation) Let h : X' — Y be a deterministic predictor.
Let h,gitor (Tesp. hy.e) be the view of the predictor h by the auditor (resp. the user).
e Ifforallx € X, hyygivor (%) = Pyger (T) = h(z), the audit is not manipulated.
* Otherwise, if there exist xy € X such that by giior (T) F hyser(s), then the audit
is manipulated.

The interactions between the user, auditor and model provider are summarized in
Figure 1.2. A model provider is successful at evading the audit if the manipulation
it performed allowed them to pass the audit. That is, even though the predictor
does not satisfy one of the requirements (i.e. y1;(h, D, ) < M;), the audit test still
accepts the predictor (i.e. T (h) = Pass).

3.1. Manipulation incentives

There are a lot of different incentives for platforms to manipulate audits. A first
incentive to manipulate audits is reputation. If the results of the audits are released
to the public, displaying strong results can boost the reputation of the model
provider and conversely, poor results can harm their revenue. Without asserting
anything about the intention of the mentioned platforms, here are some examples
of discrepancies observed between the information provided during an audit and
separate, independent observations.
« One example is the non-disclosed specialization of predictors to a specific
benchmark. This is what happened when Meta released the Llama 4 [72]
models on LMArena [73] in 2025. The LMArena is a platform used to rank
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Figure 1.5: The manipulation game. The model provider exposes a model 7,
to the users. To appear fair to the auditor while not deteriorating the utility
for its users, the model provider manipulates its answers on the audit set S.

chat-bots from user preferences. Meta was caught [74, 75] (but never con-
ceded) using a model optimized to be likable by humans on LMArena while
releasing a more controlled version to perform better on general knowledge
and reasoning benchmarks.

+ Another example is the case of research APIs where non-trivial discrepancies
between the auditor’s API and the users’ interface as been observed. In
particular, this introduces significant risks for studies based on research APIs
[51]. As an example, researchers reported some videos available on the TikTok
website were not available in the research API, and the engagement metrics
were highly underestimated by the research API [76].

A second incentive to manipulate audits appears when different criteria p, of the
specification are (even partially) antagonistic. Beyond revealing business secrets,
the choice of trade-off has to take roots in the values of the model provider and the
goal they pursue. As an audit might reveal these trade-offs, model providers can
be tempted to fake a given trade-off. An often discussed example is the incompat-
ibility between fairness metrics and the associated trade-offs with accuracy. The
notions of independence, separation and sufficiency (Definition 1.4) are mutually
exclusive, i.e. no pair of conditions can hold at the same time [25]. Moreover,
when the platform cannot collect more data, they have to resort to fairness repair
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methods that often lead to tradeoffs with performance [77]. Thus, instead of care-
fully choosing a trade-off between the different fairness notions and the accuracy
of their system, model providers can just optimize the model shown to the auditor
to satisfy the audit criteria and serve the more accurate (albeit more unfair) model
to the users.

Finally, a third incentive arises from the fines theoretically associated to the non-
compliance with current regulations mentioned in Subsection 1.2.1.

3.2. Manipulation targets

There are a lot of opportunities in the specification/verification process for a
deceptive model provider to manipulate the outcome of the audit, and black-box
audits place the auditor in a delicate position. To be a meaningful governance
mechanism, the specification and verification process of the audit must be as
transparent as possible to avoid regulatory uncertainty [78]. This transparency can
be exploited by a deceptive model provider. Per the definition of the specification
and verification process, to evade the audit the model provider can manipulate four
components: the specification data D, , the metrics p,; (and associated thresholds
M), the predictor h itself and the test 7.

Manipulating data Ifthe auditor relies on the model provider donating or giving
access to internal data to define the test dataset D, ., the model provider can
choose to hide some data in its favor. More specifically, consider a specification
(D, p, M) and a predictor M that does not meet the specification, i.e. u(h, D) <
M. [79] and [80] proved that it is easy to craft a subset D such that

« D is indistinguishable from D with respect to a statistical test such as a

Kolmogorov-Smirnov test (KS test).
+ The predictor appears to satisfy the specification, i.e. ,u(h, f)) > M.

Manipulating metrics If the model provider can influence the metrics that will
be used to evaluate it’s system, they can pick (intentionally or not) the metrics on
which their system perform well [81]. This is what happened in the opposition
between the investigation website ProPublica and Northpointe (now Equivant),
the creator of the COMPAS recidivism prediction software. ProPublica accused
COMPAS of discriminating against black people because it exhibited disparities in
False-Positives between black people and the rest of the population. Northpointe
refuted the accusation, claiming that their system was fair because it satisfied
accuracy-parity and True-Positive parity [82].

Manipulating the predictor During the audit, the model provider can easily
alter the answers to the auditor’s queries or simply swap the model shown.
Chapter 2 and Chapter 3 study the impact of such manipulations and how they
can(‘t) be detected. Some works have also suggested that model providers could
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Figure 1.6: From one-time audits to monitoring, and the different kinds of
information that the auditor has access to.

be asked to provide explanations alongside the predictions to improve the audit
efficiency [64]. However, this additional information can also be manipulated by
the model provider and used to escape the audit [83-85].

Manipulating the test In practice, because the model providers are not always
forced to open their systems to auditors, then can negotiate the access to their
internal systems to impose restrictions on the kind of tests that can be run on
their infrastructure. An example would be to impose a query budget constraint to
the auditor or force a given interface (such as a research API instead of scraping
access). Fewer queries or less access to the predictor would mean a higher variance
of the test, which could be exploited by the model provider to evade the audit.

4. Outline of the manuscript

All in all, designing a fair audit protocol is a balancing act. The specification has
to meaningfully protect users. The verification should be lightweight for honest
model providers and is still protect against deceptive ones. It requires the auditor
to be knowledgeable on the prediction task solved by the model provider, to
understand the socio-economic context it operates in, and pay attention to the
design of the audit protocol to avoid blatant manipulations.

During the three years of my PhD, I made three main contributions towards
answering the question this manuscript asks, with different assumptions about the
knowledge and access of the auditor (see Figure 1.6). The first one I will present,
although not the first in chronological order, deals with a proposition to model
the problem and some ideas to solve it. In this chapter (Chapter 2), I introduce the
framework of Auditing with a prior. To demonstrate the manipulation-proofness
guarantees that can be obtained, I introduce a prior based on the labels the auditor
has access to in their audit dataset D, . The next chapter (Chapter 3) is an
exploration of an alternative prior, based on the auditor knowing the hypothesis
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class used by the model provider. It shows that while knowing the hypothesis
the offered
manipulation-proofness guarantees vanish as the model grows in complexity.

class allows for a clever process to build the specification dataset D, .,
Finally, in Chapter 4, I explore monitoring as a solution, complementary to the
audit prior, to reduce the manipulation risks.

5. Contributions

The content of this manuscript is based on three works I have published in inter-
national conferences during my PhD. A preliminary version of [86] was published
in a local French conference. Finally, I also actively contributed to open-source
projects related to auditing, machine learning and scientific editing.

5.1. International conferences

 Augustin Godinot, Erwan Le Merrer, Gilles Trédan, Camilla Penzo, and Franois
Taiani. “Under Manipulations, Are Some Al Models Harder to Audit?” In “2024
IEEE Conference on Secure and Trustworthy Machine Learning (SaTML)”
Special issue, 2024 IEEE Conference on Secure and Trustworthy Machine Learning
(SaTML), April 2024, 644—64. https://doi.org/10.1109/SaTML59370.2024.00038
» Code: https://github.com/grodino/tryphon
» Contributions: I am the first author.

 Augustin Godinot, Gilles Tredan, Erwan Merrer, Camilla Penzo, and Francois
Taiani. “Queries, Representation & Detection: The Next 100 Model Fingerprint-
ing Schemes.” Paper presented at The 39th Annual AAAI Conference on
Artificial Intelligence. December 9, 2024. https://openreview.net/forum?id=rv0
kUJses4
» Code: https://github.com/grodino/QuRD
» Contributions: I am the first author.

« Garcia Bourrée, Jade, Augustin Godinot, Sayan Biswas, et al. “Robust
ML Auditing Using Prior Knowledge” In “Proceedings of the 42nd Inter-
national Conference on Machine Learning” Special issue, Proceedings of
the 42nd International Conference on Machine Learning, PMLR, October
6, 2025, 18794-810. https://proceedings.mlr.press/v267/garcia-bourree25a.html
(ICML25, Spotlight poster, top 2.6%)

» Code: https://github.com/grodino/merlin

» Contributions: I am the co-first author. I proposed the project to the other
collaborators, created the code-base and designed the mathematical frame-
work. Jade and Sayan helped with the proofs and Milos and Martijn helped
with the experiments.
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5. Contributions

5.2. Local conferences

« Augustin Godinot, Erwan Le Merrer, Gilles Trédan, Camilla Penzo, and Frangois
Taiani. “Change-Relaxed Active Fairness Auditing.” July 6, 2023, 91. https://hal.
science/hal-04395914
» Contributions: I am the first author.

5.3. Open source software

« Timm: A python package to re-use pretrained models easily.
https://github.com/huggingface/pytorch-image-models

- max-stats: A scraping service to collect and audit data from the French MAX-
JEUNE railway pass.
https://github.com/grodino/max-stats

« Typst: A document creation language. This manuscript is written in Typst.
https://typst.app/home
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IN SEARCH FOR A PRIOR

There is a crack, a crack in everything, that’s how
the light gets in.

— Leonard Cohen, Anthem

This chapter presents a novel theoretical framework and a practical implementa-
tion for preventing manipulations by the model provider when the auditor only
has query access to the predictor. Our analysis starts from a simple observation:
auditors can readily collect labeled data reflecting the model provider’s service
from independent sources, a common practice whose theoretical and empirical
implications remain unexplored. For example, when studying an online content
moderation system, the auditor could have some evidence at hand, to confront the
model under scrutiny, e.g., “A post with this content must pass the moderation
filter, otherwise there is some bias on a protected feature of the user profile”. Thus,
by incorporating this dataset, the auditor can independently verify the model
provider’s responses, cross-referencing them against known ground truth labels.
Our method enables more reliable detection of fairness violations while reducing
the reliance on assumptions about the model provider’s behavior. Specifically, we
aim to answer the following research question:

Can the auditor’s prior knowledge of the ground truth prevent
manipulations of fairness audits?

This chapter studies fairness audits of ML decision-making systems under manip-
ulation by the model-hosting model provider. We consider binary classification
problems, which is in line with related work in the domain of ML fairness analysis
[1, 90]. We make the following three contributions:
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Figure 2.1: The manipulation game. The model provider exposes a model /,,
to the users. To appear fair to the auditor while not deteriorating the utility
for its users, the model provider manipulates its answers on the audit set S.

1. We introduce and analyze a new fairness auditing approach for black-box
interactions where the auditor has access to prior knowledge about the model
provider and the ML task (see Section 2.3).

2. We theoretically analyze how much unfairness a model provider can conceal
given the auditor’s prior knowledge. For any auditor priors, our results
highlight the importance of keeping the auditor’s prior knowledge private
(see Section 2.3). For the dataset prior we introduce, we establish bounds on
the concealable unfairness when the auditor prior remains confidential (see
Section 2.4).

3. By simulating fairness audits on multiple tabular and vision datasets, we
provide a more nuanced understanding of how our framework should
be implemented. Our experiments offer insights into setting the detection
threshold used to identify manipulations (see Section 2.5).

2. Related Work

This chapter sits at the crossroads between three facets of the literature on the
evaluation of ML algorithms. First, the motivation to even consider the possibility
of such manipulations is rooted in the notion of fairwashing and the early works
of U. Aivodji, H. Arai, O. Fortineau, S. Gambs, S. Hara, and A. Tapp on the
manipulation of model explanations (Section 2.2). Second, this chapter addresses
a fundamental question in the external model evaluation literature: even without
manipulations, what model properties (e.g., accuracy, fairness, robustness) can be
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externally verified (Section 2.2)? Finally, our method is a new leaf, on the young
but growing tree of manipulation-proof external audit protocols (Section 2.2).

Fairwashing and the rationalization of ML ethics Addressing fairness issues
often requires compromising model performance for advantaged groups which
can discourage companies from embracing fair training practices [77, 91]. Com-
panies have two incentives to pay attention to the impact of their system on
society. The first incentive comes from regulatory efforts such as the Algorithmic
Accountability Act (AAA) [92] (US) and the Digital Markets Act (DMA) [93] (EU)
that impose fairness, transparency, and accountability constraints on large digital
model providers. Yet, how to enforce these regulations is still an open problem
[94]. The second incentive is public image. Since fairness, transparency and
accountability are laudable goal, audits, investigative journalism and certifications
[95] should force companies to pay attention to these objectives. However, both
incentives are external: the model provider just has to appear fair, transparent
and accountable. Therefore, a rational model provider can simply trade the fake
appearance of fairness for a small risk to get caught.

Definition 2.1 (Fairwashing [4]) fairwashing occurs when the actions and commu-
nication of the model provider promote the false perception that their machine
learning model respects some ethical values, while failing to uphold those claims in
practice.

The work of U. Aivodji, H. Arai, O. Fortineau, S. Gambs, S. Hara, and A. Tapp
has extensively studied how model explanations can be used for fairwashing [4,
84, 96]. Independently, the problem of explanation manipulation was studied as a
form of the bouncer problem in [85].

External evaluation of ML algorithms Fairness auditing evaluates ML models
to ensure fairness and accountability, often without access to proprietary model
internals [97]. This black-box auditing approach relies on querying the model and
analyzing its outputs against pre-defined fairness metrics [2, 98]. Current attempts
to enhance fairness audits with tangible guarantees draw inspiration from hypoth-
esis testing [55, 99-103], online fairness auditing [104, 105], and formal methods
for fairness certification [106-109]. Beyond statistical methods, the work of C.
Yadav, M. Moshkovitz, and K. Chaudhuri explores the role of explanations in the
auditing process [64]. Recent works also stress the importance of broadening the
lens of algorithm auditing by incorporating user perspectives and sociotechnical
factors [110, 111].

Attempts at robust audits Manipulating fairness audits is very simple. Auditors
can be fooled by biased sampling when the decision maker is allowed to publish a
labeled dataset as proof of model fairness [79]. Adversarial attacks on explanation
methods, such as LIME and SHAP, can be employed to produce misleading interpre-
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tations of model behavior [4, 83, 85, 96, 112-114]. model providers can also modify
the output of their models to create the appearance of fairness without addressing
underlying biases [1, 63, 90]. However, the challenge of designing audits that
are robust to advanced manipulation strategies remains open. The idea of using
auditor prior knowledge that we formalize in this work has been implicitly studied
in different contexts. Based on active learning techniques work has studied how
auditors could leverage knowledge about the hypothesis class [1, 90]. In a more
practical setting, [115] studied using model distillation methods [115] to use prior
about the ground truth and hypothesis class [115]. Finally, recent improvement
in the useability of Zero-Knowledge Proofs have sparked interest in applications
of cryptographic primitives to robust audits. Among them, Confidential-PROFITT
and FairProof propose to integrate cryptographic techniques in cooperation with
the model providers, to ensure the faithfulness of model provider responses during
audits [116-118]. However, implementing cryptographic audit protocols is very
intrusive for the model provider and technically restrictive, and thus awaits for
adoption.

3. Enhancing Black-box Auditing with a Prior

Since a malicious model provider can manipulate Demographic Parity with rela-
tive ease, the auditor has to find ways to prevent these manipulations (e.g., using a
different metric) or to detect them. In this section, we explore the latter. To detect
manipulations, the auditor must use prior knowledge about what constitutes a
“likely set of answers” on its audit dataset S. Then, using this prior, they would
be able to estimate the likelihood that the received set of answers h,, (S) has been

manipulated.

3.1. Modeling the Auditor Prior

Previous work has demonstrated that prior knowledge is both a practical and an
essential tool for auditing, yet the notion of an auditor prior has not been explicitly
leveraged in the analysis of fairness audits. We define an auditor prior as follows.

Definition 2.2 (Auditor prior) The auditor prior is a set of models 7, C Y% that
the auditor can reasonably expect to observe given her knowledge of the decision task
by the model provider.

For example, in [115], the authors study feature importance by training two models
— one on a public dataset and another via distillation of the audited ML model —
and comparing the resulting models. In this case, the prior is the set of models that
are similar to the model trained on the public dataset. Using a more theoretical
approach, [1] and [90] explored the case of an auditor knowing the hypothesis
class of the model provider, i.e., /, = H . [119] proposed to use an assumption
about the Boolean Fourier coefficients of models in the hypothesis class A to

46



Chapter 2. — In search for a prior

construct the prior 7. Finally, [63] and [96] used side-channel access (e.g., an
additional API or explanations) to the ML model to define , and derive guaran-
tees on the measured fairness. For example, in the setting of [63], the prior would
be the set of models whose outputs agree with the previous predictions collected
via scraping. In Section 2.4, we introduce a labeled dataset D, that the auditor
will leverage to define /. Definition 2.2 captures all of the situations above and
allows to formulate general results about the problem of robust auditing.

The auditing process The auditing process consists of three steps which we
visualize in Figure 2.1. Here, h,, refers to the model that the model provider exposes
to its users (the bottom part of Figure 2.1) and h,,, refers to the model exposed to
the auditor (top part of Figure 2.1). First, the auditor builds an audit set S C X and
sends the queries in S to the model provider (step @). The model provider receives
S all at once and computes the answers using its model /,,. To appear fair if it is
not, the model provider projects its labels /., (.S) on the set F of fair models. This
defines a manipulated model /,,, and the answers h,, (S) the model provider will
send to the auditor (step @, see Subsection 2.4.1). The auditor receives h,, (S) and
exploits these samples to evaluate whether the model provider is fair (h,, € F)
and honest (7, = h,,), (step ®, e.g. using Figure 2.2). Since the auditor does not
have direct access to /,,, they compare £, to their prior 7, to decide whether the
model provider is honest or malicious. Thus, the auditor tests the two following
properties of 1, :

?
Is the model provider fair? h, 6 €5 2.1)
2.1

?
Is the model provider honest? 5, A € 7,

Note In this section, we expose general results in terms of models h € yx,
Later in Section 2.4, when considering dataset priors, the considered models will
be restrictions on the audit dataset, i.e. labelings of the audit dataset. For dataset
priors (i.e., when J, is a ball, see Section 2.4), we draw J and J, in Figure 2.3.
Given a model £, the fairness audit is equivalent to checking if &, belongs to
the blue shaded area. In the example of Figure 2.3, the model provider would be
flagged as malicious as h,, belongs to  but not to 7.

Online v.s. batch auditing Note that we assume that the model provider
receives all audit queries at once and that it is possible to detect all the audit
queries. In practice, the queries are usually issued online (that is, one-by-one)
by the auditor, through web-scraping or through an API. Compared to online
auditing, it is easier for the model provider to manipulate an audit if it knows all
the audit queries before having to answer. On the other hand, because the auditor
has to send all their queries at once, they cannot use the answers of the model
provider to actively guide the generation of the audit questions (e.g., as in [1],
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[90]). Ultimately, our setting is built as a worst-case analysis of the auditing game
for the auditor.

Auditing axioms To avoid trivial audits, we add two modeling assumptions. The
first assumption ensures that the auditors’ prior is correct so that a honest model
provider does not appear as lying. The second assumption asserts that an audit is
necessary, otherwise the auditor could directly conclude from his prior that the
model provider is unfair. That is to say, the auditor should never flag a honest
model provider malicious. In particular, the auditor must have a prior that is close
to the ground truth. Those assumptions are expressed as:

h,€J, and FH,NF #+0 (2.2)

3.2. On Public Auditor Priors

A typical auditor proceeds in the following way. Upon examining a model
provider’s model h,,,, the auditor must first understand the task addressed by A,
and what constitutes a “good-performing model” on this task. In our moderation
example, the auditor might try to look for public moderation datasets to test the
performance of h,,, using a few examples. It might also look for publicly-available
moderation models to compare their resulting input/output pairs with those of
h.,,,. Unfortunately, our first result is that regardless of the prior the auditor might
construct, if these models are public (or at least known by the model provider), the
model provider will always be able to manipulate the audit:

Theorem 2.1 (Public prior) Assume the model provider knows J,, it can then
always pick h,, € {H, N F} to appear both fair and honest.

Proof (Theorem 2.1) First, recall that by definition the model provider knows 7.
Assume that the dataset prior is public, the model provider also knows 7.
Hence the model provider can compute F N H,. As by assumption, & N H, #+ ()
(Equation (2.2)), the model provider can pick any model ~,, € F N J,. |

In the case of [96], the model provider perfectly knows 7, (because the J(, is
coming from queries of its model) so the detector is subject to this manipulation
(called Irreducibility in the paper). In T. Yan and C. Zhang’s work, J, is the
hypothesis class ' of the model provider, communicated to the auditor before
the audit. Theorem 2.1 provides a novel view on the impossibility results that we
will cover in Chapter 3.

4. Using Labeled Datasets for More Robust Audits

In an ideal, yet unrealistic audit scenario, the auditor would have access to non-
manipulated answers from the original model provider model /,,. The prior %,
would then be the set of models that agree with these non-manipulated answers
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and would allow the auditor to detect inconsistencies between the original /,, and
manipulated /,, models. Yet in general, the auditor does not have access to such
non-manipulated answers.

As an alternative, we propose to study the use of a private (because of Theorem 2.1)
dataset D,, collected by the auditor to construct the auditor prior #,. This idea
(coupled with an assumption on the hypothesis class) has been studied experi-
mentally [115] but the more recent theoretical works on robust auditing diverged
towards studying priors on the model itself rather than on the data [1, 96, 119].
In the following, we define what a dataset prior is, and study the guarantees an
auditor can achieve using this prior.

Because the auditor does not have any assumption of the hypothesis class of h,,
or hp, and only observes h,, through its audit dataset D,, in this section all
models are restrictions to the audit dataset. Thus, /1, and h,, are labelings of
D,, and 7 is the space of fair labelings on D,:

h,:D,—Y% and h, :D, =Y

F ={h | h € Y'Pal and pu(h,D,) = 0}. (2:3)

Definition 2.3 (Dataset prior) Let D, = (DX,DY,DS) C X x Y x G be a la-
beled dataset the auditor has access to. Let n = |D,| be the cardinality of D, and
T > 0 a threshold set by the auditor. The dataset prior J{, is defined as the set of
models restricted to DX that have a reasonable risk L (see Definition 1.1) on D, :

H, ={heyPal | L(h,D,) <1}

Unless noted otherwise, in this section and in Section 2.5, , will denote the
dataset prior. To test if the model provider is honest, the auditor needs to verify
whether h,, € H,, i.e., whether L(h,,, D,) < 7. The risk threshold 7 thus plays
a crucial role in the guarantees the auditor will be able to achieve. The final
verification test we propose as an audit with a prior is presented in Figure 2.2.
We discuss the impact of 7 in Subsection 2.4.2 and guidelines to set its value in
Subsection 2.4.3, but first, we need to discuss the definition of optimal manipula-
tion in Subsection 2.4.1.

4.1. Optimal Manipulation

Given the audit set S and its model hp, the objective of a manipulative model
provider is to create a set of answers h,, € Y/Pal that appear fair to the auditor
but also do not raise suspicions. Ideally, the model provider would like to know
the auditor prior #, (see Theorem 2.1), but in the general case it cannot because
it is not public information. As a consequence, the model provider cannot directly
optimize its answers to be expectable and fair. However, the model provider still
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Input audit dataset D,, query access to predictor h,
threshold 7, tolerance €

1 Define D! = {(z,y) : (z,y,9) € D, and g = t}

Collect b = {h(z) : (z,y,9) € D,}
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Figure 2.2: Audit with a prior for demographic parity.

has cards up its sleeve; it already trained a model %, on a dataset D that is close
to that of the auditor D,.

Thus, instead of searching h,, in &, N F, the model provider can assume that
its true model £, is expectable — that is, h,, € #, — and try to find a fair model
h,, € & while flipping as few labels as possible from /,,. Therefore, the optimal
manipulation is the projection of /2, on 7

R, = projs(h,) = arg min, 4 d(h, h,,). (2.4)

The distance d in equation Equation (2.4) is the empirical risk L of h using the
labels of /1, as the ground truth.

d(h,h,) = > i(hyz,hy(y)) (2.5)

4.2. Achievable Guarantees

By construction, when there are no manipulations (i.e. h,, = h,,,), if the predictor
is fair (ie. p(h, Dyy) < €), then P(T . (h,,

the predictor is unfair (u(h, Dyo) > €) , then P(7,

prior

) =Pass) =1 and conversely if
(h,,) = Fail) = 1. Now,
assume that the audited predictor is manipulated, i.e. h,, # h,,. We argue that the
model provider has no incentive to manipulate the audit if their original predictor
was fair. Thus, if b, € #, then h, = h,,, and h, € H, = h,, € H,. This means
that our test 7,
the auditor is the manipulation detection rate.

test has no false positives, and the main quantity of interest to

Definition 2.4 (Manipulation detection rate) The probability P,, over the random-
ness of the provider’s manipulation strategy, that the auditor correctly detects a
manipulative model provider with optimal manipulation is

Py=P(h,, ¢ K, | h, € I,).
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Figure 2.3: Representation of the auditor prior /(,, the honest model provider
model %, and a corresponding malicious model /,,, on the fair & plane. The
red area represents the area where model providers optimal manipulations
are detected as dishonest: they fall outside of the blue region of F

Estimating or computing P, requires the knowledge of the distribution of labelings
in /. Unfortunately, unless they have access to the training pipeline of the model
provider, this model distribution is inaccessible to the auditor. To overcome this
issue, we make the assumption of an uninformative prior: since the auditor does
not know the model distribution in 4, they must assume it is uniform.

Theorem 2.2 (Prior-Uniform detection rate) Under the dataset prior of definition
Definition 2.3 with l(h,x,y) = {y(h(z) — y) the {5 norm, and the uninformative
prior assumption, the probability that the auditor correctly detects a malicious model
provider trying to be fair is

1 arccos(g) . 5 52 2
Pd:l_W /0 sin (0)d9—; 1—5

n

with DY the labels of the samples in D,, § = d(DY , &), the distance of DY to &
and W, the n-term of Wallis’ integrals.

To gain intuition about the proof, we represent the audit case for |S| =3 in
Figure 2.3. By definition of the dataset prior, /, is a ball of radius 7, centered
on DY, the labels given in the audit dataset D,. The manipulation of a model h,
can be detected only if the resulting model is outside of J(,, as shown in orange
on Figure 2.3. The probability of detection is thus 1 minus the volume of original
models %, whose projection on F lies outside of #,. This volume is highlighted
in red in Figure 2.3. The detailed proof of Theorem 2.2 is deferred to Appendix A.

Theorem 2.2 highlights two key parameters to the auditor’s success: the unfairness
of the prior § = d(D; %) and the expectability threshold 7. There are three cases
of interest: if the audit dataset D, is perfectly fair § = 0, if the distance of the
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audit dataset to the set of fair predictions is equal to the threshold § = 7 and what
happens in between.

As exposed in Corollary 2.1, if the dataset prior is perfectly fair (i.e., § = 0), then
the auditor has no chance to detect a manipulated model as non-expectable, i.e.
Pd - O.

Corollary 2.1 (Balanced dataset D,) If F(, is a ball centered in the ground-truth

DY that is fair, then the auditor has a probability zero to correctly detect a malicious
model provider trying to be fair. H, = B(D; 1) A D$0% implies P; = 0.
Proof (Corollary 2.1) If DSOS then 6 = 0 and arccos(g) = arccos(0) = 7 in the

formula of Theorem 2.2. Thus, Py = 1 — 7~ (W,, — 0) = 0. |

On the other hand, if 7 = §°, that is the J{, ball is tangent to the set of fair
predictions F then P; = 1 and any attempt at gaming the audit will be detected.

Corollary 2.2 (Tangent prior) If the prior J(, is tangent to the hyperplane of fair
predictions F, then the auditor has a probability one to correctly detect a malicious
model provider trying to be fair. That is,

Proof (Corollary 2.2) If H, is tangent to F then 6 = 7. Thus, arccos(g) =
5

arccos(1) = 0 and f;rccos(j sin™? dg = 0.

Following Theorem 2.2 with £ =1, P, =1 — &-(0—0) = 1. |

Finally, in the case 0 < § < 7, we derive a lower bound on the probability P; to
detect manipulations in Corollary 2.3. The ratio g that maximizes the detection
rate lower bound decreases (and tends to 0) as the budget increases. Thus, while
the audit dataset D, should not be perfectly balanced (i.e. 6 = 0), as the audit
budget increases it should be close to perfect parity (6 = 0).

Corollary 2.3 (Detection rate lower bound) Ifn is even, the probability of detecting
manipulations is lower bounded by

16 62\ *
—1-= <P <1.
Wn7'< 7'2> =d=

Moreover, the lower bound is maximized when g = —”H?’g Al

The proof of Corollary 2.3 is deferred to Appendix B.

2. Per our first axiom in Equation (2.2), we have that § < 7.
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4.3. Practical Considerations and Discussion

In practice, 7 is determined by the task difficulty, and the amount of data available
to solve the task. One possibility to tune the value of 7 is to use the error rate of
current state-of-the-art models that solve the task at hand as a minimum value. We
empirically explore this option in Subsection 2.5.4. If the auditor has the resources,
an alternative would be to train a set of models on the task and use them to
calibrate 7. We leave further exploration of the calibration of 7 to future work.

On the other hand, the value of ¢ is determined by the audit set sampling
procedure. In most cases, the audit set is sampled i.i.d. from a pre-specified audit
distribution. In this case, the value of § is fully determined by the resulting sample
S. To regain some control over 4, the auditor has to allow other audit set sampling
strategies, at the expense of potential statistical bias in the fairness and accuracy
estimations.

5. Empirical Evaluation

We now empirically quantify the extent to which the model provider can manip-
ulate the unfairness of its ML model. To that end, we study the concealable
unfairness: the maximum level of unfairness a model provider can hope to hide
before being detected as malicious. First, we evaluate the effectiveness of differ-
ent manipulation strategies and determine the optimal one. Since any practical
fairness repair method can be used as a manipulation methods, we explore in
Subsection 2.5.3 (RQ1) What is the best manipulation strategy implementation?
Then, we study in Subsection 2.5.4 the dynamics of the concealable unfairness
when the audit budget | S| increases: (RQ2) Can the auditor always find an audit
budget that prevents the model provider from hiding any unfairness, i.e., that
always allows to flag the model provider if malicious?

5.1. Experimental Setup

We conduct our experiments on tabular and vision modalities. The tabular dataset
comes from the ACSEmployment task for the state of Minnesota in 2018, which is
derived from US Census data and provided in folktables [120]. The objective of this
task is to predict whether an individual between the age of 16 and 90 is employed
or not. As input features of the model hp, we consider several attributes of the
individual, including gender, race, and age. The fairness of the models is evaluated
along the race attribute given in the dataset: one group consists of individuals
identified as “white alone”, while the other includes all remaining individuals.

For the vision modality, we study CelebA [121], which consists of images of
celebrities along with several binary attributes associated with each image, such
as whether the person in the photo is blond, smiling, or if the photo is blurry.
As input to a vision model, we use the image to predict one of the associated
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attributes. The target attribute varies across experiments and will be specified
accordingly. Demographic Parity is evaluated along the gender attribute given in
the dataset. For the ACSEmployment dataset, we train Gradient Boosted Decision
Tree (GBDT) and Logistic Regression (Log. Reg.) models, while for CelebA, we
train a LeNet convolutional neural network [122]. GBDT and Log. Reg. are trained
using the default parameters of their respective implementations in Scikit-Learn.
Meanwhile, LeNet is trained irrespective of the target attribute using the Adam
optimizer with a learning rate of v = 0.001, a batch size of 32, and for two epochs,
which is sufficient for the model to converge on all features. The code to run the
experiments is available online.?

5.2. Implementing Optimal Audit Manipulations

In practice, computing the optimal manipulation A,, = proj f(hp) amounts to
solving

h,,(S) € arg minL(h,Dh ) 26)
! 2.6
s.t. a(h,S) <7

with th = { (:c, h, (x)) rxe s } We note that this problem is the same problem
solved by in-processing and post-processing fairness repair methods [123]. Thus,
ironically, computing the optimal manipulation is equivalent to choosing the
optimal fairness repair method. The only difference being on which set the fairness
constraints and accuracy objectives are defined: the audit set S instead of the
training dataset. Thus, since any practical fairness repair method can be repur-
posed for manipulation, we adapted four classical fairness repair methods: ROC
Mitigation (ROC) [124], Optimal Label Transport (OT-L) [125], Linear Relaxation
(LinR) [126] and Threshold Manipulation (ThreshOpt) [127].

5.3. Quantifying the Concealable Unfairness For Different Detection
Scores

We next quantify the amount of fairness that a model provider can hide for the
different manipulation strategies above. This concealable unfairness A, (hp, hm)
is defined as the DP gap between the manipulated and honest models.

A, (hy b)) = 2By S) — (R, S)] (2.7)

To decide whether the model observed during the audit is manipulated, the auditor
has to decide whether h,, € J{, or not. To do so, the auditor estimates L(h,,,, D, )
by computing the detection score Detect(h,,,, S).

3. See https://github.com/grodino/merlin.
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Figure 2.4: The concealable unfairness by the model provider for different
detection scores and manipulation strategies. We highlight this for two
features of the CelebA dataset (left) and for two different ML models trained
on the ACSEmployment dataset (right). The horizontal red line indicates the
Demographic Parity of the most unfair model without manipulation.

Detect(h,,,S) = > 1L(h,,(z) #y) (2.8)
(z,y)eS

To build (hp, hm) model pairs, we consider manipulation methods among ROC
[124],0T-L [125],LinR [126] and ThreshOpt [127], varying hyperparameter values
when applicable. In Figure 2.4, we plot the value of the concealable unfairness
A, (hp, hm) against the detection score Detect(h,,,, S) computed by the auditor.
We show the results of LeNet models trained on two CelebA targets (first and
second subplots), and GBDT and Log. Reg. models trained on ACSEmployment
(third and fourth subplots). The horizontal red lines indicates the DP of the most
unfair model without manipulation.

First, we observe that for all the datasets, the model provider can conceal signif-
icant amounts of unfairness: from 10 to 20 points differences between the two
protected groups. Comparing the concealable unfairness values with the DP of the
most unfair honest model (red horizontal line), we observe that the manipulation
strategies almost all able to totally conceal the original model unfairness. Then,
focusing on the x axis, the difference in Detect(h,,,S) between the different
honest models highlights the impact the performance of the model provider’s
model should have on the detection threshold 7. In fact, depending on the dataset
and on the model, Detect(hp, S) varies from ~ 0.1 to ~ 0.2. In Subsection 2.5.4,
we explore a solution to setup the threshold.
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Figure 2.5: The concealable unfairness for different audit budgets (i.e., data
samples from the labeled dataset). We highlight this for two features of the
CelebA dataset (left) and for two different ML models trained on the ACSEm-
ployment dataset (right).

5.4. Dynamics of the Concealable Unfairness as The Audit Budget
Increases

The probability of detecting manipulations (via the the detection score) should
intuitively increase as the auditor gains access to a larger number of data samples
(i.e., has a higher audit budget) since this allows for a more accurate comparison of
h,,, with the data prior 7. In this experiment, we explore how well this intuition
holds in practice. For this purpose, we fix the hyperparameters for each manipu-
lation method by selecting those that result in the highest concealable unfairness
for a given base model, as discussed in Subsection 2.5.3. Then, for each base
model-target attribute pair, we determine the maximum concealable unfairness
that a model provider can achieve while ensuring that its detection score (see eq.
Equation (2.8)) remains below the detection threshold. As proposed in Section 2.4
the threshold for each model is set to 1 — z, where x represents the maximum
accuracy achieved when training a set of models on the corresponding target. This
process is repeated for audit budgets ranging from 100 to 5, 000.

The results of this experiment are shown in Figure 2.5. The two plots on the
left display the results for CelebA using the same base model but different target
attributes, while the two plots on the right show results for ACSEmployment
using the same target attribute but different base models. These results reveal two
distinct cases. In the first case (CelebA Smiling in Figure 2.5), the concealable
unfairness converges to zero as the audit budget increases. In the second case (all
the other facets of Figure 2.5), the concealable unfairness remains nonzero despite
an increasing budget. We hypothesize that this separation arises from the low
aleatoric uncertainty associated to the Smiling target compared to that of High
Cheekbones and ACSEmployment. Detecting a smile on a picture is a well defined
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task. On the other hand, determining if a person has “high cheekbones” is less
well defined (the notion of “high” can vary from annotator to annotator), leading
to more label noise. Similarly, guessing the income of a person simply from a few
demographic attributes is also more subject to label noise as similar people (even
with similar job positions) can have very different salaries. All in all, because the
accuracy range of models trained on Smiling is narrower, the detection threshold
T can be tighter, which makes the manipulations harder to implement.

As a consequence, while our dataset prior prevents manipulations for tasks with
low aleatoric uncertainty, model providers can still game audits if they can hide
in the label noise. This answers (RQ2). In response to (RQ1), we observe from
Figure 2.4 and 2.5 that the Linear Relaxation and ROC Mitigation manipulation
strategies are the most effective for a manipulative model provider.

6. Conclusion and Discussion

We investigated, both theoretically and experimentally, the conditions under
which an audit can or cannot be manipulated when auditing with a prior. We
introduced an empirical method for tuning the manipulation detection threshold
to maximize the auditor’s probability of detecting malicious model providers.

While our work offers regulators a framework for defending against audit manip-
ulations, the path to accountability extends much further. A significant gap
remains between audit evaluations and the actual mitigation of identified issues
[128], [129]. Moreover, one-time audits are inherently limited, as model providers
can alter their models in harmful ways after the audit has concluded. Addressing
these challenges in future work will require the development of continuous or
adaptive auditing mechanisms, potentially incorporating auditor priors, to ensure
sustained accountability and fairness.
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LEVERAGING
KNOWLEDGE ON THE
HYPOTHESIS CLASS

The laws of mathematics are very commendable, but
the only law that applies in Australia is the law of
Australia.

— Malcom Turnbull, Prime Minister

The previous chapter introduced the audit-with-a-prior framework and studied
the case when the prior is defined by a labeled dataset (Definition 2.3). Among the
previous attempts at formalizing robust auditing [1, 64, 104], Yan et al. [1] have
shown that the knowledge of the hypothesis class used by the model provider can
potentially reduce the required number of audit queries to reach a given robustness
level. Their method is based on disagreement-based active learning [130] which
requires training surrogates of the model provider’s model. However, they only
demonstrated their proposed audit algorithm with linear models on small datasets
(StudentPerf [131] and COMPAS [132]). Furthermore, they prove that quantifying
the potential improvement (in terms of query complexity) of their algorithm
over a simple random baseline is computationally intractable. In this chapter, we
investigate whether the model provider can engineer models that simultaneously
achieve a high utility and evade the audit and ask

Can the auditor’s prior knowledge of the hypothesis class prevent
manipulations of fairness audits?

To that end, we compare the manipulation-proofness guarantees of a simple uni-
form random audit algorithm (Algorithm 1) against the best guarantees a regulator
could hope for. Our contributions are three-fold.

1. We first consider those hypothesis classes that can perfectly reproduce any
labeling of the dataset. This covers two practical cases: either the model
provider has a model with a very high capacity, or the auditor’s prior on the

59



2. Related work

model provider’s model is uninformative. We prove in Theorem 3.1 (Subsec-
tion 3.4.1) that no audit method —whether active or passive—can deliver a
better performance than random sampling. We also prove in Corollary 3.1
that this impossibility holds even if the hypothesis class can only imperfectly
reproduce any labeling of the dataset with a bounded error rate.

2. To uncover what properties of the hypothesis class influence its auditability,
in Subsection Subsection 3.4.2 we analyze the simple class of dictionary
models, whose manipulation guarantees can be analytically derived. We
identify regimes in which the hypothesis class cannot be audited more effi-
ciently than by random sampling.

3. To build a practical understanding of our theoretical results, we formally
define the notion of manipulability under random audits and capacity in
Subsection 3.5.1. We then evaluate the manipulability under random audits
of classical ML models for tabular data. We empirically confirm the strong
connection between the classical Rademacher complexity and the manipula-
bility of manipulation-proof auditing. Since modern ML hypothesis classes
tend to exhibit larger and larger capacities, we argue that our work brings
up the limits of the current formulation of manipulation-proof auditing.

2. Related work

The problem of manipulation-proof auditing and more generally black-box,
remote, and robust property verification of ML platforms arises from the need
to enforce regulations. As an example, consider the European Union. Classical
fairness regulation of online ML models mainly comes from the Racial Equality
Directive [133], the Framework Equality Directive [134] and the Gender Equality
Directives [135, 136]. Recently, the EU set out to create regulations specific to online
platforms. These are the AI Act [137], the Digital Services Act [51] and the Digital
Markets Act [52]. These directives provide a legal framework that prescribes what
online platforms may and may not do, but offer little to verify that these rules
are respected in practice. The manipulation-proof framework is a first attempt to
provide operational solutions that can detect when platforms do not follow the
law.

In addition, our results are mostly related to the following lines of work.

Algorithm auditing The field of algorithm auditing is interested in under-
standing the impact of algorithms on the lives or the people impacted by those
algorithms’ decisions. In practice, auditing algorithms in vivo (that is as they are
deployed in online services) is challenging because they constantly evolve, mostly
without records [138]. For a survey on examples of published academic audits of
decision systems, refer to [139]. Moreover, because it is impossible for researchers
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or regulators to audit each automated decision system, it has been observed that
most of the recent discoveries of problematic algorithm behavior have surfaced
thanks to users of those systems [111, 140]. Again, after a problematic algorithm
behavior has been detected and after a court decision has been made, we still need
to be able to monitor that this decision is respected.

Audit metrics and audit design With the advent of broadly publicized algo-
rithm audits such as COMPAS [132] or Reuters’ study on Amazon’s recruiting
tool [141], there has been an effort to devise metrics and their interpretations
to better understand the impact of algorithms on their users. Most of the effort
has been directed towards the operationalization of fairness values into the ML
framework [25]. Classical fairness measures include Demographic Parity [142],
Equalized Odds [127], Equal Opportunity [127] or Predictive Parity [143]. All of
these measures encompass different visions of fairness and choosing one versus
the other has political implications on the considered notion of fairness [144,
145]. While still marginal, some works are interested in other aspects of the audit
of Al algorithms. For example, [146] is interested in the verification that online
platforms comply with the Data Minimization Principle. Another interesting work
[147] considers the problem of automatically auditing the privacy guarantees of-
fered by Al algorithms. However, most of the presented works do not yet consider
the possibility of the model provider gaming their audit.

Robust verification The literature on robust auditing is still in its infancy. The
manipulation-proof [1] framework has only recently been introduced. However,
with its goal of efficiently choosing the next audit query based on previous queries
and the associated outputs of the API, the manipulation-proof framework exhibits
clear links with the active learning literature [148, 149]. With the aim of finding
methods to ease the audit, [64] showed that the explanation provided by the model
provider can greatly improve the robustness of audits. For example, they show
that for linear classifiers, a single result along its counterfactual explanation allows
to totally characterize the model. Our work does not assume that the auditor has
access to explanations. It is likely that faithful explanation could lead to audit
algorithms with increased MP guarantees. On another line of works, [117] and
[150] suggest instantiating an audit protocol in which both the model provider
and the auditor would be active, drawing inspiration from zero-knowledge proofs
and interactive verification protocols.

Benign overfitting and model capacity As we proved in this work, manipu-
lability under random audits has deep connections with model capacity and their
ability to perfectly fit arbitrary datasets. Classical metrics that capture the notion
of model capacity include the VC-dimension [151] or the Rademacher Complexity
(which we used for its usability in practice) [152]. Moreover, our experiments
on the link between auditability and model capacity have been motivated by the
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recent finding that larger models can fit the training dataset perfectly while still
showing good generalization properties [153]. This effect has been observed for
linear models [154], Support Vector Machines [155] and Decision Trees [156]. In
the manipulation-proof audit setting, we show that this type of behavior is very
problematic. In fact, if a model is able to fit any audit set and yet keep its general-
ization performance, platforms do not even have to lie to the auditor. They just
have to train their model to give the answers the auditor expects on their audit set.
Then, the model provider can define any objective for the rest of the input space,
even if it does not align with the auditor’s metric.

Interestingly, the connection between model capacity and audit query complexity
is not limited to manipulation-proof estimation of parity measures. In their work
on certified feature sensitivity auditing [64], Yadav et al. provide an algorithm to
audit feature sensitivity for decision trees whose query complexity grows linearly
with the capacity (number of nodes) of the tree.

3. Auditing and manipulation-proof estimation

During a typical audit, the auditor defines a measure of interest p with an
associated threshold 7,. Classical measures used by auditors are statistical
parity indicators [25] focusing on independence (e.g. demographic parity, group
fairness), separation (e.g. balance for positive/negative class, equalized odds) and
sufficiency (e.g. calibration, predictive parity). Given that demographic parity does
not require any ground truth labels and since it is often used as the archetypal
example in the literature, we use it as the measure p throughout this paper. While
the results we present refer specifically to demographic parity, it is straightforward
to extend them to any parity measure of the form

u(h,S) =P(h(X)=1| X € S, E)

—P(h(X)=1| X € S,E) (3.1)

with E an event defined with respect to the random variables X, X, and Y,
where X represents the input, Y the ground truth label, and X 4 € {0, 1} is the
sensitive attribute of interest for the auditor. For example, for demographic parity,
E = (X4 = 1). We would like to stress that for other less common measures that
can nonetheless present an interest for auditors (e.g. level of privacy [147] or the
degree of compliance with data minimization [146]), MP remains an open problem.

3.1. Threat model

We describe the interaction between the auditor and the model provider in the
threat model diagram (Figure 3.1). Before the audit, the model provider discloses
the hypothesis space J they use (decision trees for example) to the auditor. Then,
during the auditing phase, the auditor interacts with the (unknown) model h €
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Figure 3.1: Security game of the manipulation-proof auditing framework.
Before the audit, the model provider declares the hypothesis space J to the
auditor. During the audit, the model provider serves the model h € A and
the auditor queries h on S. After the audit, the model provider can change its
model to A’ with the constraint that Vz € S, h'(z) = h(z) or equivalently,
h' € H(h,S).

H exposed by the model provider to iteratively build an audit set S C X. The
manipulation-proof framework acknowledges the possibility for a model provider
to try to evade the audit by showing a fair model h to the auditor, then switching to
a more accurate but potentially unfair model h’. The only assumption on how the
model provider may choose the new model A’ is that it should be consistent with h.
The consistency constraint requires h’ to have the same outputs as h on the audit
set S, otherwise the auditor could easily check that the model provider changed
its model after the audit by re-querying it on S. We now formalize the capabilities
and knowledge of the model provider and the auditor in the MP framework.

« Auditor capabilities: The auditor can send adaptive queries to the model
provider to build an audit set S C X.

« Auditor knowledge: The auditor knows the hypothesis class  implemented
by the model provider and the value of the sensitive attribute z 4 of all the
points in the input space X'. However, the auditor does not know the specific
hypothesis h € J implemented by the model provider.

« Platform capabilities: The model provider can change its model from h € A
to b’ € H after the audit as long as h’ respects the consistency constraint
Ve € S, h(xz) =h (z).

« Platform knowledge: The model provider knows the property u (e.g. Demo-
graphic Parity) being measured by the auditor. As the auditor, it knows the
value of the sensitive attribute x 4 of all the points in the input space XX
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3.2. Machine Learning notations
Except when noted, we will consider a binary classification task as in [149],
with finite input space X' and output space ¥ = {0,1}.* Y¥* denotes the space of
functions X — Y. For any sample x € XX, we refer to its sensitive attribute (e.g.,
gender, ethnicity, religion) as z 4, € {0, 1}. The sensitive attribute of the points in
X induces a partition of the input space. We note ¥, = {x € X' : x4 = 1} and
remark that X5 = X 4. For any set V, P(V) denotes the set of all subsets of V'
and U (V) denotes the uniform distribution on V. By training the classification
model, the model provider effectively chooses a model h in some hypothesis class
J{. The auditor defines a measure p : ' x P(X) — R, which is known by the
model provider. For any subset V' C J and S C X, we define the diameter of V
with respect to the measure i as

diam,. ¢V = hr’r’%ggcvm(h, S) — u(h’,S)|, (3.2)
when S is the entire input space X, we abuse the notation and write
diam,,. ¢)V = diam, V. Finally, define for any subset V' C , sample z € X'
and label y € {0,1} the set V[z,y] = {h € V : h(z) = y}. The cost Cost(V') of
a subset V' C H is defined in Equation (3.3). Note that when the context is clear,
we elide the ¢ for simplicity.

if diam,V <e
Cost, () = 1 + min ey max,erq 1y Cost, (V(z,y]) else (3.3)
Before we formally define the capacity of a hypothesis class in Subsection 3.5.2, we
will use the term capacity loosely. Intuitively the capacity of a hypothesis class A
is related to the ability for any labeling of the input space X to find a hypothesis
h € I that realizes this labeling. More details on the notion of capacity can be
found in Section 3.2.

3.3. What is an active auditing algorithm?

An audit algorithm .4 with label budget s is a sequence of (pos-
sibly randomized) s+ 1 functions (fy,...,f,). For each iteration i,
the function f;: (X x {0,1})""' — X chooses the next sample x; =
fi((zg, h(zg)), -y (x;_1, h(z;_1))) to query and add to the audit set. After the
query budget has been spent, the end result of the algorithm is the audit set S =
A(h). Note that most published black-box audits of web platforms are not active
[139]. In this case, an audit algorithm reduces to a single (possibly randomized)
function f, which does not depend on the answers provided by the model provider.

4. Should X be infinite, [149] notes that it suffices to sample a finite i.i.d. subset X and extend
all the following bounds by classical generalization bounds.
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3.4. The manipulation-proof auditing framework

Following the framework of Yan & Zhang [1], the model provider is assumed to
be self-consistent, i.e. when the model provider returns a given output y = h(x)
to an auditor’s query z, the model provider commits to this value and cannot
return a different answer y" = h(z) if x is queried again at a later moment in
time. Furthermore, as explained in the threat model Figure 3.1, it is assumed that
the auditor knows the hypothesis class 7 C {0,1}* of the model implemented
by the model provider. The self-consistency of the model provider together with
the knowledge of the hypothesis class defines a subset of “plausible” models in H
that have the same answers as the model provider on the current audit set S. This
subset is called the version space [130, 157].

Definition 3.1 (Version space) Define the model h €  and audit set S C X. The
version space of h induced by S is

H(h,S)={h € H :Vx € S,h(x) = h(x)}.

We assume that the model provider seeks to maximize its profits, which is not
necessarily aligned with the property that the regulator seeks to enforce. During
the audit process, the auditor incrementally builds an audit set S C X based on
their previous queries and the answers of the model provider. The goal of the
auditor is to produce an estimate [ as close as possible to the real value while
being robust to the potential manipulations implemented by the model provider.
We now formulate the two requirements of the manipulation-proof (MP) auditing
problem, as introduced in [1].

Create an algorithm A with smallest budget s such that,
(fidelity) |u(h, A(h)) — p(h, X)[ <e  (3.4)
(manipulation-proofness) diam,J (h, A(h)) < ¢

Fidelity is the classical estimation constraints. It requires the estimated value fi =
w(h*,S) to be close to the real value p(h, X'). In addition, manipulation-proofness
requires that if the model provider changes its implemented instance from h to
h’ while respecting the self-consistency constraint h" € # (h, S), the difference
between the previous p(h,X) and new p(h’, X’) values of u must be bounded.
Therefore, the p-diameter is the biggest change in the value of i the auditor would
accept if the model provider changed to another (consistent) hypothesis.

3.5. Comparing manipulation-proof auditing algorithms

There are two ways to compare two audit algorithms .4 and A’. Either fix a target
manipulation-proofness guarantee ¢ and evaluate the number of queries needed
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Algorithm Query complexity
Random sampling (Algorithm 1) O( % log|7(])
Optimal deterministic [1] Cost (H)

Oracle based approximation (AFA) [1] O (log|F | log|X'| Cost(H))

Table 3.1: The query complexity of different auditing algorithms in the
manipulation-proof framework, extracted from Yan et al. [1]

by A and A’, or fix the audit budget s and evaluate the p-diameter of the audit
sets built by A and A’.

Yan & Zhang [1] focused on the former: the study of the query complexity of
different audit algorithms. For general hypothesis classes, they introduced three
auditing algorithms. The first one is the baseline random audit algorithm. This
audit algorithm consists in sampling among points with positive and negative sen-
sitive attributes, and computing the empirical frequencies of the events (h(X) =
1| X4=1)and (h(X)=1| X, =0) (see Algorithm Algorithm 1). To capture
the minimal query complexity attainable by deterministic audit algorithms, they
introduced a second algorithm based on the recursive minimization of Cost(J).
Finally, T. Yan and C. Zhang introduced a third, oracle-based, algorithm that we
coin AFA. We summarize the query complexities proved by [1] in Table 3.1.

Motivated by the implementation of MP audit algorithms, we choose to focus on
the second comparison approach: fixing an audit budget and evaluating the u-
diameter. This approach is better suited to our situation since in practice, auditors
have a limited query budget that would be agreed upon with the model provider
prior to the audit.

3.6. The computational complexity of manipulation-proof auditing
As exposed in Table 3.1, the best attainable query complexity, as well as the query
complexity of the more practical AFA algorithm depend on the value of Cost ().
In addition, the computational complexity of AFA [1] is the time to train a model
from the hypothesis class & multiplied by the query complexity. However, T. Yan
and C. Zhang prove that Cost(F) is hard to compute, hard to approximate and
hard to optimize [1]. Thus, not only it prevents practical implementations of the
optimal deterministic algorithm, it also prevents practical analysis of the query
complexity and computational complexity of AFA for large models that are costly
to train.

4. The competitive effectiveness of random audits

Current state-of-the-art models for tabular data (see Figure 3.5) and image data
(see e.g. [153]) are able to fit very large train sets with close to perfect accuracy
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while retaining good generalization properties. In our setting this would mean
that these models can represent any binary classification function f : ' — {0, 1}
of the input space. As we saw in Subsection 3.3.6, the only tractable algorithm
(AFA [1]) that was proposed to solve the MP auditing task (Equation (3.4)) is still
too computationally intense to audit large models because it requires to be able to
train a lot of copies efficiently. Moreover, while [1] experimented on small datasets
with linear models, there exists no implementations or practical experiments on
larger models. Thus, the potential gains brought by AFA are hard to predict. Yet,
for AFA to be used in practice, it would be necessary to balance the extra cost
induced by auditing with AFA with the added guarantees of AFA. Thus, a natural
practical question arises. Is the added manipulation-proofness guarantee
worth paying the computational toll?

To answer this question, instead of analyzing Cost(#) (which is hard to
compute and derive) as [1], we directly express the value of diam , 7 (h, S) for
specific hypothesis classes. Identifying hypothesis classes /{ wherein the value of
diam , (h, S) remains constant across all audit sets S allows us to find scenarios
in which enhancing manipulation-proofness guarantees beyond that of a random
baseline is impossible.

In this section, we consider three typical but insightful forms of hypothesis space
H to better understand this balance between computational cost and added
robustness. We prove in Subsection 3.4.1 that for hypothesis classes shattering the
whole input space, all the audit algorithms have the same performance as random
sampling. Next, to understand what happens for classes that are only able to fit a
part of the dataset, we consider the illustrative class ﬂ,‘}f“ of dictionaries of size m.
We derive the exact value of their y-diameter in Subsection 3.4.2 and show the link
between the memory as an intuitive notion of the capacity and the MP guarantees
obtainable when auditing dictionary models. Last but not least, building on the
results of Subsection 3.4.1 and Subsection 3.4.2, we introduce a formal notion of
the capacity of a binary classification hypothesis class as the maximum number
of samples a model provider can interpolate while still retaining good generaliza-
tion performance. Under this definition, we prove in Subsection 3.4.3 that large
capacity models cannot be audited more efficiently than by the random baseline.
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Require: Proportions 3, 55, budget s
Ensure: audit dataset S with |S| = s
st (B Xal] s | Bo] T |
2 ST + sample sT points in X4, without replacement

3 S~ ¢ sample s~ points in X, without replacement
4 Return S = ST U S~

Algorithm 1: The random sampling audit strategy

4.1. Hypothesis classes that can fit the dataset entirely

To build intuition on the following theorems, let us first consider classes able to
fit any labeling of X'. This corresponds to the case of a model provider with a very
large, over-parametrized hypothesis class /A able to fit any labeling of the whole
input space X'.’> This assumption is equivalent to considering the hypothesis class
H = {0,1}*. Because all the functions from the input space to the output space
are possible, the answer of the model provider on a query x does not give any
information on the possible answers to the other queries in . It follows, that no
matter how the points are iteratively chosen, only the number of points (and the
value of their associated sensitive attribute) will matter in the computation of the
pu-diameter. We now formalize this intuition.

Theorem 3.1 (No need to aim) Let = {0,1}*. For any audit set S C X and
hypothesis h € H,

diam, # (h,S) =2 — (P(X €S| X, =1) +P(X € 5 | X, = 0))

Proof sketch. The first step in proving Theorem 3.1 relies on the fact that all
the instances b’ € H (h, S) have the same value of u(h’, S). After decomposing
the p-diameter on S and S, we use this fact to separate the p-diameter into the
difference between a maximization and a minimization problem. The optima of
these problems rely on the existence of hypotheses h', h* € 7 (h, S) that exactly
fit the sensitive attribute (resp. its negation) on S. Since J is the space of all
functions, it is always possible to find such h' and h*. Finally, we find these optima
and simplify their expressions to reach that of Theorem 3.1. A complete proof is
provided in Appendix C.

The valuesP(X € S | X, =1)and P(X € S | X4, = 0) are aggregated quanti-
ties that depend only on the relative proportion of sensitive (x4 = 1) and non-
sensitive (z4 = 0) samples in the audit set S. Therefore, for any pair (P(X €
S| X,=1),P(X €S| X,4=0)), one can design a random sampling scheme

5. This does not contradict the No Free Lunch theorem since here, the input space X is finite.
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Audit budget
10
=100
300
= 800
Audit set

p-diameter

""" optimal

random

memory (in % of dataset size)

Figure 3.2: The diameter (vertical axis) resulting from the amount of memory
(horizontal axis) of the dictionary model studied in subsection 3.2. The
various audit budgets are represented by different curve colors, while the
optimal audit set appears as dashed curves, and the random baseline audit
sets as plain lines.

that achieves the desired relative proportions. We expose such algorithm in
Algorithm 1. Since the auditor by definition knows the sensitive attribute of each
sample, the idea is to sample points from X', and X5 with the right proportions
(B1: B) 0 Spapom: Setting (81, 8,) = (P(X € | X, =1),P(X € S | X, =
0)) in Algorithm 1 yields (P(X € S, q0m | X4 =1),P(X € Sondom | X4 =
0)=PXeS|X,=1),P(XeS| X, =0)). Following Theorem 3.1, any
audit set S with the same relative proportions (P(X € S| X, =1),P(X €
S| X4 =0)) yields the same p-diameter. Since any couple (P(X € S | X, =
1),P(X €S| X, =0)) is also attainable by the random sampling algorithm
described in Algorithm 1, when the hypothesis class can perfectly fit any
arbitrary label distribution, all audit algorithms —active or not- have at
most the same manipulation-proofness guarantees as random sampling,.

As a side note, removing the assumption that the auditor knows the hypothesis
class implemented by the model provider is equivalent to assuming # = {0, 1}*.
In this sense, by proving that random sampling is optimal when the hypothesis
class is unknown, Theorem 3.1 demonstrates that knowing # is necessary (but
not sufficient) to design more efficient manipulation-proof auditing methods.

4.2. An illustrative example with dictionaries

It is unlikely in practice that any hypothesis class can fit the entire input space
X. We now relax this assumption to pursue our analysis of the achievable manip-
ulation-proofness guarantees of models with a large capacity. To that end, we
introduce the class F% of dictionary models. A dictionary d € FH % is built by
choosing a set of m € [n] samples in X and storing the corresponding labels.
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When the dictionary is asked to label a sample that it did not store, it returns 0
as a default value. Define, for any set of vectors V' C RY, S(V) the set of vectors
obtained from V by including all permutations of the coefficients of each v €
V. The hypothesis class of dictionaries of memory m is formally introduced in
Definition 3.2.

Definition 3.2 (Dictionary hypothesis class) Consider an input space X', n = |X|.
The class of dictionaries of memory m € [n] is defined as

Hot = 6({0,1}™ x {0gn-m})

While such a hypothesis class is not likely to be used in a practical context (as
it will typically fail to generalize beyond the encountered examples, exhibiting a
blatant overfitting) it is simple enough to support an analysis of the MP guarantees
for both randomized and optimal approaches. Moreover, its main parameter (the
memory m) directly influences its capacity. The exact value of the p-diameter of
dictionary hypothesis classes is exposed in Theorem 3.2. The proof can be found
in Appendix D.

Theorem 3.2 (Memory and auditability) Consider S C X, d € ﬂgj“. Notem’ =
m — |z € S : d(x) = 1|. The u-diameter of H3(d, S) is given by
min(’IA ﬂg,m’> min(’x_Aﬂg
+ —
| X 4l ’IA’

’
')

diam , H5(d, S) =

Proof sketch. The proof relies on the same development of the diameter as in
the proof of Theorem 3.1 but instead of finding A" and h*, we are able to give
the values of the optima thanks to the structure of #4t. The complete proof is
exposed in Appendix D.

We are interested in the high memory m, low audit budget |S| regime. In this
situation, there exist couples (S, m) such that ’IA N §‘ <m' and ‘I_A N g‘ <
m/. Thus, in this regime, the p-diameter does not depend on the memorized
points of the particular dictionary d chosen by the model provider. Therefore,
as for the case 7 = {0,1}%, in the high memory, low audit budget regime, all
audit algorithms - active or not — have at most the same manipulation-proofness
guarantees as random sampling.

Simulation of the impact of memory over diameter The expression of the
p-diameter exposed in Theorem 3.2 is piecewise linear in the memory m. To
gain intuition, we plot the value of diamuﬂ,‘f& s) in Figure 3.2 for a setting
where |X| = 1000, P(X 4 = 1) = 0.3 and the p-diameter of the random strategy
is averaged over 100 realizations of S. We first observe the drastic impact of

dictionary memory on an audit of a fixed budget: for instance, with an audit budget
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of 300 (representing nearly one-third of the whole input space) an optimal audit
set barely achieves a p-diameter of 1 when auditing dictionaries with memory
m = 500. Furthermore, given a fixed audit budget, the gap between randomized
and optimal audit sets shrinks as the memory grows. This is especially striking in
low audit budget regimes, that correspond to a typical audit situation. Moreover,
for an audit budget of 100 and memory values larger than 70% the random and
optimal audit strategies have the same p-diameter. This observation hints that
Theorem 3.1's conclusions should hold for a broader set of hypothesis classes.

4.3. Tying it all together: large capacity and auditability

We derived in Subsection 3.4.2 the exact expression of the y-diameter for toy
models able to memorize part of the input space. Motivated by the benign overfit-
ting phenomenon [153, 156, 158, 159], we now consider the case of a hypothesis
class that is able to perfectly fit any subset S C X of reasonable size, but require
in addition that the resulting hypothesis h* maintains good accuracy on the rest
of the dataset.

It has been observed that contrary to common knowledge on the bias-variance
tradeoff, large ML models can exhibit good generalization properties while per-
fectly fitting the train data. This benign overfitting phenomenon (also related to
double descent), is observed in models that are largely overparametrized compared
to the training data available at hand. Nevertheless, we show in Figure 3.3 that
trees and GBDTs can reach the maximum capacity, indicating that they also can
interpolate the training data. Drawing intuition from the empirical characteriza-
tion of benign overfitting in [153, 156, 158, 159], we derive the formal definition
of a large capacity hypothesis class in Definition 3.3.

Definition 3.3 (Benign Overfitting Hypothesis class) Consider an input space XX,
a hypothesis class 7 C {0,1}* and a labeling c € {0,1}*. F is said to exhibit
benign overfitting with respect to labeling c if there exists dy € N, and € € [0,1)
such that

Vd <dy,S CX,0€{0,1}¢,3h € K,

Vo, € S,h(z;) = o, (fit any train set)
IP(h(X) =c(X)| X € §) =1—¢ (with low error on c)

As is stands, Definition 3.3 is tightly linked to the notion of version space. If A
exhibits overfitting, we are guaranteed that all the version spaces # (h*, S) (such
that |S| < d,)) derived from H contain a hypothesis that generalizes well on the
whole dataset. Moreover, Definition 3.3 is the literal formalization of the notion of
benign overfitting considered in [153] and [158]: models that can fit any labeling
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—even random- of the train set while still having a good test performance when
evaluated on the target distribution.

This definition of large capacity models enables the same analysis as in Theo-
rem 3.1, without the requirement that the hypothesis class /A spans the entire set
of functions {0, 1}%.

Corollary 3.1 (Benign overfitting and auditability) Let X and F C {0,1}* be
any input space and hypothesis class. Assume that i exhibits benign overfitting with

respect to the sensitive attribute X 4 and its opposite 1 — X 4 ¢, then for any d < d,,
and S € X?,

diam, J((h*,S) >P(X € S | X, =1) +P(X € S | X, = 0)
—2P(Xef)—2(1-P(Xeb))

The proof of Corollary 3.1 is deferred to Appendix E Observe that lower bound on
the p-diameter given by Corollary 3.1 only depends on the aggregated quantities
]P’(X € g), IP’(X €S| X, = 1) and IP’(X €S| X, = 1). As for Theorem 3.1,
this implies that no audit method, active or not can perform better than a simple
random sampling baseline (Algorithm 1) with the right proportions 3; and f,.
ThetermP(X € S | X, =1)+P(X € S| X, =0) — 2P(X € S) indicates the
importance of the relative proportion of these two audited groups in the audit
set as in Theorem 3.1. The term 2¢(1 — P(X € 5)) indicates that as expected, the
larger the error rate € gets, the smaller the y-diameter will be. Thus, when the
hypothesis class exhibits benign overfitting, all audit algorithms —active or
not- have at most the same manipulation-proofness guarantees as random
sampling. This shows that, under manipulations, large models currently used in
production are not auditable more efficiently than by random sampling.

5. Manipulability under random audits and model ca-
pacity

As shown in Section 3.4, the random audit baseline is optimal when the model has
a large capacity, but has no guarantee of optimality when the hypothesis class is
constrained to lower capacities. To compare ML algorithms in practice, we now
introduce a measure of manipulability under random audits and a measure of model
capacity. We will use these methods to empirically evaluate the manipulability of
auditing several models of increasing capacities in Section 3.6.

6. That is, Definition 3.3 holdsforc =x4andc=1—1x4
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5.1. Measuring the manipulability under random audits of practical
models

The manipulability of a hypothesis class #, is defined (Equation (3.5)) as the u
-diameter obtained and averaged over audit datasets S sampled by the random
audit baseline Algorithm 1 with budget s.

Manipulability (7, s) = Eg 5. [diamuﬂ(S, h*)] (3.5)

The manipulability under random audits is a lower bound of the auditor
“power” In a perfect situation, for any budget s = |S|, the auditor would be
able to select the audit set S* that attains the minimum pu-diameter, whatever the
hypothesis class # and chosen hypothesis h* € H are. As explained in Subsection
3.3.6, this is not possible in practice for computational reasons and thus cannot
be simulated. Thus we evaluate the manipulability under random audits with the
baseline random audit strategy (Algorithm Algorithm 1). Taking the expectation
of diam, 7 (h*, S) over random audits allows to upper bound the value of the
minimum attainable y-diameter min 4 diam , 7 (h*, A(h™)).

The manipulability under random audits is a lower bound of the model
provider “power” In a fully adversarial setting, whatever the hypothesis
class ', the model provider would choose the hypothesis h* that maximizes
diam 7 (h*,S) for most of the audit sets S the auditor could come up with.
While this would effectively be the worst case for the auditor, it is however
unlikely to happen in practice since the model provider would have to balance the
maximization of the accuracy with the maximization of the y-diameter. Therefore,
we consider the more practical situation in which the model provider can freely
choose the hypothesis class # but the implemented instance h* minimizes a
classical loss L adapted to the model being trained (e.g. cross-entropy or ¢, norm).
This can be seen as a lower bound of the adversarial “power” of the model provider.

5.2. Measuring the capacity of practical models

There are multiple operationalizations of the notion of capacity, from theoreti-
cally-rooted metrics such as the VC dimension [151] or Rademacher complexity
[152], to more empirical definition such as the number of iterations until over-
fitting [153]. The interplay between VC-dimension and manipulability under
random audits is already pointed out in [1], where it is observed that models of
VC-dimension higher than 1, 600 have a high manipulability under random audits.

Unfortunately, the VC dimension of a class is difficult to estimate in practical set-
tings. Instead, the empirical Rademacher complexity (Equation (3.6)) is leveraged
to quantify the capacity of the studied hypothesis classes. Informally in our setting,
a hypothesis class has a high Rademacher complexity if whatever the labels and
size of an audit set S, there exists an instance hg € H that fits those labels on
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Figure 3.3: Distribution of the capacity (horizontal axis) for different hyper-
parameters choices on the three datasets (vertical axis). Each model is
trained with different hyperparameter values with each couple (model, hy-
perparameter) representing a different hypothesis class . For each (model,
hyperparameter) couple, the empirical Rademacher values R,,,(# o D) are
averaged over 15 realizations of D and o, before computing the model
capacity.

S with high accuracy. To avoid threshold effects in our experiments, we average
the complexity over different sizes of D considered in the Rademacher metric
(Equation (3.7)). Formally:

1
R, (H oD)=—E_, 11 |su o;h(z; 3.6
( ) m {0,1} [he;)[ x; ( )] (3.6)
Capacity(#) = Ep.xm g [Bm(scen)] (3.7)

6. Experiments

In this section, we explore the relation of the manipulability under random
audits (Equation (3.5)) with the capacity of hypothesis classes (Equation (3.7)).
The following experiments were run on three tabular datasets: StudentPerf [131],
COMPAS [132] and Adultlncome [120]. Dataset statistics and considered tasks
are presented in Table 3.2. Neural methods on tabular data are still outperformed
by tree methods [160]. We thus choose to focus our study on the four following
models: linear models, perceptrons, decision trees and gradient-boosted trees.
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Figure 3.4: Distribution of the Manipulability (manipulability under random
audits) values (horizontal axis) of different models H on a selection of datasets
(vertical axis). Each bar represents a different model H (trees, linear models,
...). Each model is trained with different hyperparameter values with each
couple (model, hyperparameter) representing a different hypothesis class 7.
For each dataset, the size of the audit set is set to 10% of the dataset size:
|S| = 0.1|X|. For each (model, hyperparameter) couple, the p-diameter are
averaged over 15 audit datasets before computing the manipulability.

Similar to [160], we selected a range of hyperparameters for each model and
sampled a total of 500 hyperparameters over the 4 models. In previous sections,
we stated results with respect to a given hypothesis class /. In the following
experiments, a hypothesis class # represents a couple (model, hyperparameters).
Thus, a model represents a family of hypothesis classes H = (.7[1, cey ]{f), each
hypothesis class #; being associated with a hyperparameters tuple.

The hyperparameters and their value range are listed in Appendix H (Table 6.1).
For each model, we created a grid with all the possible combinations of hyperpara-
meter values and ran our experiments on all the resulting (model, hyperparameter)
couples.

6.1. Simulating hypothesis spaces with a broad range of manipula-
bility and capacity

In Figure 3.4, we plot the manipulability under random audits of different hypoth-

esis classes. These classes are constructed by using multiple hyperparameters for

each family H listed in Table 6.1; each dot then represents a specific (family,

75



6. Experiments

dataset Sizen Features d Task

StudentPerf 395 43 Predict if students pass the exam
COMPAS 6172 21 Predict subject recidivism
Adultlncome 22,268 10 Predict if income is >50,000

Table 3.2: Datasets stats

hyperparameter set) couple. On one hand, for large datasets (such as Adultincome
and COMPAS), we observe that simpler models (linear, perceptron) have a very
low manipulability, no matter the hyperparameter set used. On the other hand,
for smaller datasets (such as StudentPerf), smaller models (such as linear models
or perceptrons) can also fit the data hence also becoming harder to audit.

Similarly, in Figure 3.3, we plot the capacity of the simulated hypothesis classes on
AdultIncome, COMPAS and StudentPerf. As discussed before, it can be observed
that for AdultIncome and StudentPerf datasets, tree-based models reach the max-
imum capacity value of 1. However, on the COMPAS dataset all hypothesis classes
exhibit capacity values that do not exceed 0.2 points. This has been observed
before [161] and does not affect our main argument on the link between model
capacity and manipulability.

6.2. Measuring the y-diameter in practice

As originally defined in [1] and following the definition of the p-diameter, the
evaluation of diam (g 1. requires to solve the following optimization problem:

maxpy p lu(h, S) — u(h')|

| (3.5)
subject to h(x) = h'(z) = h*(z) Vz € S

This problem be separated in two optimization problems: the maximization/mini-
mization over h € H of u(h,S) under the constraint that Vx € S, h(z) = h*(z).

max;, /min,, p(h,S)

3.9
subject to h(xz) = h*(x) Vz € S (3.9)

As proposed by [1], we use the method introduced by [162] to reframe this
constrained optimization problem as a sequence of weighted classification tasks.
Then, we use off-the-self estimators from scikit-learn and XGBoost to perform the
optimization with the appropriate weights.

6.3. Model capacity conditions manipulability

In Subsection 3.5.1 we compared different models and how difficult they were to
audit, depending on the chosen hyperparameters. We now take a closer look at
the impact of a model’s capacity on its manipulability under random audits, in
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Figure 3.5: Distribution of the manipulability under random audits values
(vertical axis) of different models versus their capacity (horizontal axis) on a
selection of datasets. Each point represents a couple (model, hyperparameter).
For each dataset, the size of the audit set is set to 10% of the dataset size:
|S| = 0.1|X|. For each (model, hyperparameter) couple, the Manipulability
is averaged over 15 audit datasets, and the capacity is computed over 30
randomizations of the dataset labels. The error bars represent the standard
deviation.

an attempt to confirm the link between both concepts. We plot in Figure 3.5 the
relation between the capacity of a hypothesis class and its manipulability under
random audits. Points also represent (model, hyperparameter) couples, while the
vertical error bars represent the standard deviation of the p-diameter values for
different random audit sets S.

Consistent with the intuition and results developed until now, we observe that
for all the datasets, the manipulability under random audits increases with the
capacity of the hypothesis class. While on both AdultIncome and StudentPerf,
the p-diameter reaches the maximum capacity value at almost 2, for COMPAS,
the effect is not as dramatic. To highlight the connection between the results
exposed in Section 3.4 and the empirical relation found between model capacity
and manipulability under random audits, we focus next on two specific points,
marked with the letters A and B in Figure 3.5.

First, consider the point A = (Capacity ~ 0, Manipulability = 0). For a hypoth-
esis class to have a null capacity, it has to have null Rademacher complexity on
any subset of the sample space. This is verified by models that perform no better
than random labels generation. Since the value of u(h,X) of any instance of
such hypothesis class is only determined by the ratio of samples with a positive
sensitive attribute, the p-diameter of such hypothesis class is null. This is why in
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Figure 3.5, models with near-zero capacity have a very low (if not null) manipula-
bility under random audits.

The second notable point is B = (Capacity = Capacity,,,., Manipulability =
Manipulability, ..). Any hypothesis with a unitary capacity has a unitary
Rademacher complexity for any dataset size s and thus shatters any subset of X
Therefore, at point B, Theorem 3.1’s hypothesis # = {0, 1}** holds. This means
that hypothesis classes that are characterized by this point cannot be audited more
efficiently than by a random audit strategy. It follows that (at least on StudentPerf
and AdultIncome) the model provider can always choose a hypothesis class that
cannot be audited efficiently by any strategy, forcing the auditor to prompt most
of the input space to obtain robustness guarantees.

Generalization versus diameter We saw that by choosing the right hypothesis
class (that is, the right set of hyperparameters), the model provider can easily evade
the audit. However, in practice the choice of hypothesis class is also guided by
a classical train-dev-test separation, choosing the hyperparameter set that gener-
alizes best. What is the typical p-diameter of hypotheses classes that generalize
well? To answer this question, we simulate a 5-fold hyperparameter optimization
procedure. For each family of models, we denote 7, the hypothesis class with
the set of hyperparameters that minimize the 5-fold average test loss in its model
family H. For each model family,

(0)

marker with red edges. Interestingly, for COMPAS and AdultIncome datasets and

ot 18 differentiated in Figure 3.5 by a star

for all model families, the generalization-optimal hypothesis classes #,; have a
relatively low capacity compared to the maximum achievable capacity, especially
for tree-based models. For the StudentPerf dataset, the results are more nuanced,
most likely because the dataset has a limited size, which implies that it is simpler

to reach high capacity values.

As a glimmer of hope, from point A to B, there is a range of hypothesis classes
for which the random strategy could be improved as seen by the size of the y
-axis error bars. Overall, the hypothesis classes that are most likely to be imple-
mented by faithful platforms (the hypothesis classes that generalize well) are
already straightforward to audit (they have a Manipulability ~ 0). Yet, unfaithful
platforms wanting to game the audit can always choose a hypothesis class that
forces the auditor to issue a lot of queries to reach higher manipulation-proofness
guarantees.

6.4. The cost of exhausting the auditor

We observed in Section 3.4 and Subsection 3.5.1 that the hypothesis classes that
are the hardest to audit are those with the largest capacity. Yet, we also observed
that the hypothesis classes most likely to be implemented (i.e. the ones with the
highest generalization) have a low u-diameter and are not those with high capac-
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Figure 3.6: Distribution of the cost of exhaustion for the four model families
(perceptron, linear, tree and GBDT) on the three considered datasets. The
error bars show the 95% confidence interval on the values of the difference
of Accuracy,, for the best hypotheses in H** and F*. For all models,
on all datasets (except for trees and linear models on StudentPerf), the cost
of exhaustion is below 1%. Trees are the models with the highest cost of
exhaustion, while for all the other models, the cost of exhaustion remains
relatively low (in particular for the large capacities GDBTs), indicating a
negligible accuracy cost for audit evasion.

ity. In the manipulation-proof framework of [1] we operate in, the model provider
chooses the hypothesis class without constraints before disclosing it to the auditor.
Therefore, when choosing a specific model family H, a malicious model provider
would have the possibility to trade performance (i.e. generalization capability)
with the ability to attempt audit evasion. To understand the trade-offs involved in
balancing these two objectives, we introduce the notion of Cost OfExhaustion(H)
of a model family H.

A model family H = {#, ..., H} is a set of hypothesis classes. The family H of
decision trees where each hypothesis class 7, corresponds to a maximum depth
value ¢ is an example of model family. To define the CostOfExhaustion metric,
we first introduce two particular hypothesis (A and F*) classes of H. F* is
the hypothesis class in H with the best trained test accuracy:

J3° = arg maxg ey I’flea})[( ACCUT&CYtest(h,X)- (3.10)

79



6. Experiments

Assuming that an honest model provider chooses its hypothesis class based on
generalization capabilities, 7 is the hypothesis class an honest model provider
would actually choose. Then, define the hypothesis class in H with the largest
manipulability (for a fixed audit budget s):

HH" = arg max sy Manipulability (7, s). (3.11)

Should a model provider try to escape audits at a low cost, they would try to find a
hypothesis class whose optimal hypothesis h* leads to a high u-diameter. Thus, the
cost of exhaustion is the accuracy cost of using the hypothesis class A * compared
to using JF*:
CostOfExhaustion(H) = max Accuracy e (n, 1)

B f?elgf}i Accuracytest(h,x) (312)
The cost of exhaustion is plotted in Figure 3.6, for the four model families already
considered, on the three datasets. The error bars show the 95% confidence interval
on the values of the difference of Accuracy,,, for the best hypotheses in F**
and J(*. For all models, on all considered datasets (except for trees and linear
models on the dataset StudentPerf), the cost of exhaustion is below 1%. Trees
are the models with the highest cost of exhaustion. In fact, as we observed in
Figure 3.5, given enough capacity, trees can reach the maximum manipulability
under random audits. Yet, it is known that without regularization, complex trees
can easily overfit the training data, thus lowering the max test accuracy of the
H* class compared to the max test accuracy of F*“. On the other hand, the
models with the lowest cost of exhaustion (except on StudentPerf) are linear
models. As observed on Figure 3.3, for all datasets, linear models span a small
portion of the capacity range (around .1 points for StudentPerf and less than .01
points for COMPAS and AdultIncome), compared to larger models (e.g. GBDTs)
which cover almost the entire capacity range on StudentPerf and AdultIncome.
This result is challenging for the existence of efficient audits in the manipulation-
proof framework. In fact, the witnessed low cost of exhaustion for larger capacity
models indicates that platforms may evade audits at the cost of a minor loss in
accuracy.

6.5. Effects of the audit set size

In this section, we experiment with different sizes of audit dataset and show that
our conclusions do not change with the change in dataset size (we had | S| = .1|X|
in previous experiments). To do so, we select three different hypotheses classes for
the
hypothesis class with the lowest capacity _ and with the highest capacity 7, .
In Figure 3.7 we show the audit manipulability of each hypothesis class against the

each model family. We choose the hypothesis class that generalizes best #,
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Figure 3.7: Evolution of the p-diameter with the size of the audit set S
represented as a proportion of the total dataset size for the Adultlncome
dataset. Each line represents an audited model, whose hyperparameters are
either tuned for the best generalization, either tuned for the highest capacity
or tuned for the lowest capacity. For each (model, hyperparameter) couple,
the p-diameter is averaged over 15 audit datasets.

size of the audit dataset |.S|. The results indicate that there is no significant inver-
sion of the manipulability under random audits between the various hypotheses
in the range of interest. Results in Figure 3.7 are shown only for the AdultIncome
dataset. T he results for the other datasets are showed in Appendix F, in Figure 6.1
and 6.2, which both lead to the same conclusion.

7. Conclusion and discussions

The introduction of the manipulation-proofness framework [1] has certainly been
an important step for auditors to start understanding that algorithmic audits can
suffer from model provider manipulations and what cost that brings along.

In this work, we conducted a thorough exploration of the concept of manipulation-
proofness. We derived theoretical conditions on the hypothesis class implemented
by the model provider for the impossibility of efficient manipulation-proof audits.
We carried out a thorough experimental validation on the manipulability under
random audits of state-of-the-art models for tabular data. Our results draw a
connection between the capacity of the audited model and the manipulability of
the audit task.

We now discuss some countermeasures to improve the audit robustness. A
promising line of work is to require platforms to provide certificates. Since the
goal of certificates is to provide a cheap verification procedure (at the cost of a
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potentially high certificate generation cost), this would shift the computational
burden to the model provider. One example of a fairness certificate was provided
in [117]. Such extended assumptions (over mere black-box audits) are certainly an
interesting research line for future works.

In the end, when implementing large-capacity models, a model provider can
always game the audit without sacrificing too much accuracy. We believe that this
demonstrates the limitations of black-box auditing for regulation, even when the
hypothesis class used by the model provider is known to the regulator. We claim
that regulators should be given more than black-box access to AI models as part
of the audit procedure or that they should explore certification-based audits such
as [117]. Therefore, we urge the community to participate in the search for audit
frameworks that are both exploitable in practice and also supported by theoretical
guarantees.
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EFFICIENTLY

MONITORING MODEL
CHANGES

LD

Pour saisir le monde d’aujourd’hui, nous usons d’un
langage qu fut établi pour le monde d’hier. Et la vie
du passé nous semble mieux répondre a notre nature
pour la seule raison qu’elle répond mieux a notre
langage.

— Terre des hommes, Antoine de Saint-Exupéry

In the two previous chapters, the goal was to prevent manipulations during the
audit by using some prior information available to the auditor. In this chapter,
I take a different approach and explore methods to detect model manipulations
after the audit. In this setting, the auditor can use any audit method to measure
the metrics they are interested in, and then periodically check that the predictor
they observed has not changed too much after the audit. One technique that can
be used for model change detection is model fingerprinting.

Similarly to how image fingerprints can analyze the provenance of a picture by
identifying artefacts due to the compression scheme, the specific sensor technol-
ogy, or even the up-scaling method [163], model fingerprints analyze the outputs
of a ML model h to extract artefacts that are characteristic of h itself. Model
fingerprints were originally introduced to verify model provenance [164]. A model
owner would extract a unique representation Z;,, the fingerprint, from the output
of their model h. Later, he fingerprint Z, would be compared with the fingerprint
Z,, extracted from another model A’, which is suspected to be a stolen copy of
h. Finally, based on the comparison between Z;,, and Z,,, the model owner would
decide if they need to flag A’ as stolen and take further action.

The initial goal of this work was to select the model fingerprint most adapted to
our auditing use-case. However, this chapter instead presents a surprising artefact
of fingerprinting evaluation. Fingerprinting evaluation consists in generating
positive and negative model pairs (h, h’), where positive model pairs consist in
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Figure 4.1: The TPR@5% of most of the fingerprinting schemes proposed in
the literature is at best as good as the simple baseline we introduce. Each
colored dot represents the performance of an existing fingerprinting scheme
evaluated on a given benchmark. The gray dots are fingerprinting schemes
we created using our Query, Representation and Detection (QuRD) decom-
position.

a victim model h and a model A’ stolen from h (e.g. through model extraction),
while for negative model pairs, h and h’ are totally unrelated (e.g. trained on
a different dataset). A collection of such positive and negative pairs is called
benchmark. Figure 4.1 displays the True Positive Rate (TPR@5%, see Paragraph
Fingerprint evaluation for the exact definition) of existing fingerprints on two
existing benchmarks, ModelReuse [165] and SACBench [166]. Figure 4.1 demon-
strates that the simple baseline that we introduce (gray dashed lines) performs on par
with existing state-of-the-art fingerprinting schemes (coloured dots), which are much
more complex. Thus, in this work, we seek to understand the reasons behind this
result from two angles:

Why does a simple baseline match complex fingerprints performance
on existing benchmarks?

As in most of the model fingerprinting literature, we consider image classification
models. Note that, contrary to model watermarking methods, fingerprinting does
not provide any theoretical guarantees on the false alarm rate (e.g. false positives).
Thus, a strong empirical evaluation of model fingerprinting schemes is paramount
to ensure their empirical soundness. Our contributions will be the following.

1. We introduce a simple yet powerful baseline and provide theoretical guar-
antees on its performance. Albeit on a simple model copy detection task,
this constitutes the first theoretical analysis of the guarantees of a model
fingerprinting scheme.

2. We survey and compare existing fingerprinting schemes for classification
tasks. Our novel queries-representation-calibration decomposition (hereafter
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we coin QuRD) enables us to systematize and thus uncover new and
unexplored fingerprinting schemes. The novelty of QuRD lies in its mix
of geometrical (distance between fingerprints leads to distance between
models) and statistical insights (the fingerprint is then used to perform a
statistical property test).

3. We compare existing benchmarks and investigate their differences in both
the way the pair of test models (h, h’) are generated and the distinguisha-
bility of the victim h and suspected h’ models. Our work constitutes the first
systematic comparison of classifier fingerprinting benchmarks, and reveals
insights into how to build more informative and challenging benchmarks.
All the code required to re-run our experiments, implement new benchmarks
and evaluate new fingerprints is available online.”.

1. Background and Setting

Stealing ML models The possibilities for an adversary to steal a given model
are endless. They could break into the infrastructure of their victim [167], perform
black-box model extraction attacks [168, 169] or just use the output of the victim’s
model to train their own. In this work, we consider adversaries seeking to steal
the functionality of the victim’s model.

Detecting IP violation via model fingerprinting The dominant approach to
model fingerprinting is based on comparing the outputs of models on adversarial
queries, as in AFA [170], TAFA [171], IPGuard [172], ModelDiff [165], FUAP [173],
FCAE [174], DeepFoolF [175], and DeepJudge [176]. Other approaches leverage
the sensitivity of ML models at random points sampled from the train set (e.g.
SSF [164], ModelGif [177]), some explanations generated from the victim model A
ZestOfLIME [178] or even train classifiers to distinguish stolen from benign model
MetaV [179]. Some other works explore the use of natural images (images in the
training/validation set) to craft their query set .S, as in FBI [180] or SAC [166]. All
of these works try to detect model stealing, however comparison among them and
the assumptions they make are rarely taken into consideration. In this work, we
introduce a framework to compare and evaluate these fingerprints.

Problem setting Consider an input space X', a space of labels ¥ = {1, ...,C}
with C' classes, a data distribution 2 on X and a ground truth concept ¢ €
{1,...,C}*. A first party called the victim trains a model k on a classification task
C, then deploys this model in production. A second party called the adversary
wishes to recreate a model h’ that is close to identical to h (h" ~ h) to deploy it
at a low cost. The task of checking whether a suspected model h’ is a copy of the
victim model h is modeled as a property test [181].

7. https://github.com/grodino/QuRD
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2. Filling the gaps with the AKH baseline

Definition 4.1 (Model fingerprint) A model fingerprint T is a (randomized) algo-
rithm that takes two models h and h’ as input and returns 1 with high probability if
h' is stolen from h, O else.

1) > £ Copied model !
if h <+ h' then P(T(h,h’) =0)> % Just an other model

{if h=Hh then P(T(h,h')=1)

Wl wWIN

The fingerprint (a.k.a. the property test) should be effective, robust and unique. We
also require the fingerprint to be efficient in terms of queries and samples.
1. Effectiveness: if h’ = h, then the suspected model is flagged by the victim
with high probability.
2. Robustness: if b’ is a slightly modified version of h (via fine-tuning, pruning,
model extraction ...), then the suspected model should still be flagged.
3. Uniqueness: Original models h” # h are not flagged.
4. Efficiency: the test uses few queries to the suspected model h’ and few
samples z from the data distribution.

Accessibility of data and models The type of fingerprinting scheme that can
be used by the victim depends on the access the victim has to the suspected model
h’. We will assume that the victim can freely query the suspected model h’. Yet,
the output of the suspected model will range from label-only query access, to top-
K labels query access, probits or logits query access and even to gradients query
access. Following the fingerprinting literature, it is assumed that the victim has
full access to its training data and model A.

2. Filling the gaps with the AKH baseline

The first contribution of this paper is the proposal and analysis of a simple yet
powerful baseline, which, as we observed in Figure 4.1 performs at least as well as
State-Of-the-Art fingerprinting schemes.

It is assumed that the victim has access to samples from the input distribution,
for example the test set they used to validate their model. The baseline refers to
Tolstoy’s Anna Karenina principle that states “All happy families are alike; each
unhappy family is unhappy in its own way”. Thus, instead of using random
samples for the input space X', we look for points that are mis-classified by h and
compare the victim and suspected models on those points. Our baseline, coined the
Anna Karenina Heuristic (AKH, Figure 4.2), proceeds as follows. First, the victim
chooses a negative input: a point z ~ 2 such that h wrongly classifies z: h(x) #
c(z). We write D, the resulting negative inputs distribution. Then, the victim
queries the suspected model A’ on z. Finally, if b’ (z) = h(z) the suspected model
h’ is flagged as stolen, otherwise h’ is deemed benign.
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Requires Sampling access to 2, white-box h, black-box h’
1 Draw z ~ D, (distribution on X such that h(z) # c(z))
2 If h(z) = h'(x)
3 | Return 1 (Stolen)
4 Else Return 0 (Benign)

Figure 4.2: The proposed baseline, AKH.

Proposition 4.1 (AKH guarantees) Consider h,h’ € Y* two models and o =
P(h(z) = c(z)) (resp. o/ =P(h'(z) = c(x))) their accuracy. Let 6 = dg, p
be the relative Hamming distance between h and h’ and 0~ = P(h(z) #
h'(x) | h(x) # c¢(x)). The property test T, defined by AKH enjoys the following
guarantees:

If h="h, P(D)T(hk)=1=1
§—(1—a)

1—«

If h+ R, P(D)T(h}K) =0] =0, >

The proof of Proposition 4.1 is deferred to Appendix G. Proposition 4.1 establishes
that AKH is a one-sided error test. Thus, in the favorable scenario where b’ is
copied (i.e. not tampered with), 7, will always detect it. To simplify the analysis, we
defined AKH using only one query to the suspected model. To further decrease the
False Negative Rate, one should run the baseline multiple times. A majority vote
among the values returned by 7, decreases the False Negative Rate exponentially
[181]. If instead of selecting negative examples (points x € XX that are wrongly
classified by h), the victim was to use random samples according to 2, the test
would still have a one-sided error but the True Negative Rate P(2D)[T (h, h’) = 0]
would be equal to the hamming distance ¢ between h and h’. This gives us an idea
on when AKH can outperform schemes based on random sampling: either when
the error rate 1 — « of the victim model A is low or when the error rate 1 — o’ of
the suspected classifier A’ is low compared to 1 — a.

The experimental TPR@5% of AKH is displayed in Figure 4.1 in gray dashed lines.
On ModelReuse (SDog120 dataset) and on SACBench, AKH performs on par with
the best existing fingerprints. On ModelReuse (Flower102 dataset), AKH even
performs better than the best existing fingerprints. In the two following sections
we explore the reasons behind this observation by looking at the two players of
Figure 4.1: the fingerprints and the benchmarks used to compare them.
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work

The literature on model fingerprinting does not provide a unified definition of
model stealing detection. Most works focus on particular transformations of the
stolen model, which they seek to detect. Only a few works [172, 173, 180] are
based on a rigorous formulation of the problem. Some fingerprinting schemes (e.g.
ZestOfLIME or ModelGif) are described from a geometrical point of view: the goal
is to create a distance between models to distinguish stolen models from unrelated
models. On the other hand, some works are described from a statistical point
of view: the goal is to test whether A" = h or not. Thus, comparing and catego-
rizing existing fingerprints is not trivial. As a second contribution to this paper,
we propose an original decomposition of the existing (and future) fingerprinting
schemes into three core components:
1. Query Sampling, which generates the query set S C X' on which to query
h and h', e.g. selecting a subset of the victim model training set h.
2. Representation, which computes a compact representation Z;, = g(Y},)
and Z,, = g(Y,,) of the answers Y, = {h(z) : x € S} and Y}, = {h/(z) :
x € S} that are returned by the two models h and h’ on the sample S. A
basic strategy is to use the raw answers as a representation, that is, Z;, =
Y Zy = Yo,
3. Detection, which uses the two fingerprints Z;, and Z,,, and possibly a set
of calibration fingerprints {Z;} , to decide whether h’ is a stolen version of

h or not.

3.1. Query Sampling (Q)

Existing approaches use four main techniques to build the query set when gen-
erating fingerprints, Uniform sampling, Adversarial sampling, Negative sampling,
and Subsampling (see Table 4.1). Query Sampling (Q) methods are based on the
transformation of a seed query set S,..4, which is either the training set or the test
set used by the victim when generating h (both assumed to follow the same data
distribution 2), or images composed of random pixel values.

Uniform sampling The easiest way to generate S is to sample uniformly from
the data distribution or from a seed set S,,.q C X

S~D or §~U(Sueq) (4.1)

Adversarial sampling Adversarial sampling exploits the intuition that models
tend to be characterized by their decision-boundary [165, 172, 182]. Compared to
uniform sampling, adversarial sampling leads to a better detection rate for a lower
query budget s. Starting from a set of seed inputs S,y C X, adversarial sampling
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Seed set S, Uniform Adversarial Negative Subsampling  Joint detector
training
input space 0 [PGuard 0 0 MetaV
test set 0 DeepJudge, FBI 0 0
FCAE
train set ModelGif ModelDiff, SAC ZestOfLIME, FUAP
FUAP, IPGuard, SAC
AFA, ModelGf,
DeepJudge,
SSF!

Table 4.1: Type of seed set S,.q (rows), Query Sampling (Q) (columns), model
access (emphasis) and Representation (R) (decorations) used. Adversarial
sampling dominates the fingerprinting literature. Fingerprinting scheme ap-
pearing in multiple cells either require or can accommodate both Sampling/
seed types. The text decoration stands for the access required to the remote
suspected model h’: no decoration = label access, underline = probits access,
The text emphasis indicate the type of Representation: no emphasis = raw
model outputs, italicized = pairwise representation, bold = listwise represen-
tation. 'SSF actually uses sensitive samples instead of adversarial samples.

computes a set of samples S, 4, targeted or not, using the following optimization
procedure.

Sadv = {arg max,, |e—ul<e d(h(l‘), h’(u))a US Sseed} (42)

Common methods used for solving Equation (4.2) include Projected Gradient
Descent [183] or DeepFool [184]. Finally, the final query set is the concatenation

of the seed and adversarial samples S = (Sg.q, Sady)-

Negative sampling As for adversarial sampling, negative sampling [166] enjoys
better detection rates for a given query budget. However, it does not need to
compute gradients of A, it just needs query access to h, which can dramatically
speed up the generation of the query set S. The core intuition follows that if A’
makes the same mistakes as h, there is a high probability that the adversary stole h.

S C S,.q subject to Vx € S,h(z) # c(x) (4.3)

Subsampling Subsampling exploits domain knowledge to create new samples
V(z) = {:1:]} _in the vicinity of a seed point x. Compared to negative and adver-
j

sarial sampling, subsampling allows to create a large query-set with few samples
from the data distribution.
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S = (Sseed7 {V(x)}xesmd>- (44)

[178] uses the super-pixel sampling technique of LIME [185] to generate images

around each image in a seed set S, 4.

3.2. Representation (R)

Once the model h and h’ have been queried on a sample of data points, the
resulting outputs Y}, and Y}, must be recorded using some representation. We have
identified three strategies in the literature: Raw Labels/Logits, Pairwise correlation,
and Listwise correlation.

Raw labels/logits The simplest representation of the set of answers collected
from the two models would be the set of answers themselves (labels or logits).
However, depending on the way h’ was constructed (or not) from h, different
representations are more suitable.

Z, =Y, € (R®)" (logits) or {1,...,C}* (labels) (4.5)

Pairwise correlation When the audit set S consists of pairs of samples (z,u)
that have a specific meaning (e.g. u is an adversarial version of x as in ModelDiff), it
is interesting to use these pairwise comparisons as the representation of the model.

Zy, = (d(h(z), h(v))) g u)ecs € R (4.6)

Listwise correlation Generalizing the idea of pairwise correlation, if the audit
samples are not specifically paired but comparison is still meaningful, the victim
can compute the similarity between all pairs of answers and use the resulting
similarity matrix as representation. This is what is used by SAC.

Zp = (d(h(=), h(w))) ses,ues € R (4.7)

3.3. Detection (D)

Finally, once the victim has generated the fingerprints of their model and that of
the suspected model (Z;, and Z;,/), the last step is to compare Z; and Z,, to decide
whether to flag A’ or not.

There exists two approaches to Detection (D): directly compute a distance (e.g.
hamming as in AFA or mutual information as in FBI) between the generated
fingerprints or learn a classifier that takes the two fingerprints and outputs a theft
probability score as in MetaV. In both cases, the victim needs access to its own
pool of fingerprints from unrelated models § = {Gl, s G 9|), to calibrate the
detection threshold.
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Figure 4.3: TPR@5% gains on ModelReuse obtained by modifying the sampler
of existing fingerprints. The sampler can be modified in two ways: drawing
seed queries from the train vs test set (materialized as circles vs crosses) or
using a different queries sampler (materialized as a different color). Selecting
negative seed inputs for adversarial generation instead of the original seeds
can lead to improvements on the order of 10 points (+14%).

3.4. The next 100 fingerprints

In this subsection, we highlight the benefits of our novel QuRD decomposition
for creating new and improved fingerprinting schemes and compare the existing
fingerprints on a previously under-explored axis: the query budget.

Fingerprint evaluation The Effectiveness, Robustness and Uniqueness of finger-
prints are evaluated by computing the Receiver-Operator Curve (ROC). The final
Detection (D) step consists in threshing a distance or the output of a classifier
based on the fingerprints Z; and Z,,. The ROC shows the relationship between
the True Positive Rate (TPR), which is the proportion of positive pairs (h,h’)
that are flagged as positive by the fingerprint, and the False Positive Rate (FPR),
which is the proportion of negative pairs (h, h") that are flagged as positive by the
fingerprint. The Receiver-Operator Curve (ROC) captures the trade-off between
the cost to the victim of missing a stolen model compared to the cost of wrongly
flagging a model as stolen. Recognizing the high cost of False Positives for the
victim, we will report the TPR such that the FPR is below a threshold of 5%:
TPR@5%, averaged over 5 runs with independent random seeds.

Creating new fingerprints using the QuRD framework Following our QuRD
framework, Table 4.1 categorizes exiting fingerprints (listed previously in Back-
ground and Setting). Table 4.1 shows that a large part of the literature focused on
fingerprints based on adversarial sampling. Several QuRD combinations have not
been explored yet by the literature. Moreover, the schemes always focus on using
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3. Query, Representation & Detection: the QuRD framework

Stealing and ModelReuse ModelReuse SACBench
obfuscation methods Flower102  SDog120 CIFAR10
same v v v
E quantize v v X
o finetune X X v
.=
§ transfer X X v
prune v v v
« probits v v v
—~ 9
< £ label v v v
o «©
= £ adversarial X X
5 v
(labels)

Table 4.2: Stealing and obfuscation methods implemented by different bench-
marKks.
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Figure 4.4: Distribution of the conditioned Hamming distance d¢j, 5y be-
tween the models of each positive/negative (h, h’) pair.

only one type of Query Sampling (Q) but very rarely explore chaining or mixing,
e.g.using negative samples as the seeds for generating adversarial examples.
Thus, to explore the space of QURD combinations, we re-implemented the Query
Sampler, Representation, and Detection of four existing fingerprints: ModelDiff,
SAC, IPGuard and ZestOfLIME. We mixed them to create ~ 100 new fingerprints.
In Figure 4.1, gray-edged dots represent such QuRD combinations. Of course,
not all new combinations are worth considering, as many QuRD combinations
exhibit lower TPR@5% than existing fingerprints. Thus, in Figure 4.3 we show the
potential improvements that can be reached by modifying the Query Sampler (Q)
and/or the seed set S,.4 of existing schemes on ModelReuse. Figure 4.3 shows
that it is possible to increase the TPR@5% of IPGuard by 10 points (+14%) simply
by choosing negative seed samples as the starting points for the generation of
adversarial examples.

Comparing apples to apples: a focus on the query budget Although not
displayed in Table 4.1, the query budget required by the existing fingerprints
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ModelReuse ModelReuse SACBench
Flower102 SDog120 CIFAR10
1.0 Fingerprint
VA X =#8— AKH baseline (ours)
08 e x’§_——x=>s xx/ x Random Sampling
8 g | g o N i x 21 x——"" " % IPGuard
S U A xx,x——‘*—* =%~ ModelDiff
© o4 ¥ % SAC
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== ZestOfLime
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Figure 4.5: The effect of the query budget s on the Efficiency and Robustness
of existing fingerprints, as measured by TPR@5%.

can vary greatly. For example, ZestOfLIME requires from 1000 to 128000 queries
while FBI only requires ~ 100 queries to reach the advertised performance. In
Figure 4.5 we show the TPR@5% of existing fingerprints along our AKH baseline
and selected QuRD variations. Keeping a small query budget is of paramount
importance, mainly to remain stealthy against potential defenses [186], but also
to avoid disrupting the remote service with (tens to hundreds of) thousands of
queries. Once more, we observe that fingerprints based on negative sampling
equal or outperform fingerprints based on adversarial sampling. From 0 to 100
queries for SACBench and 0 to 50 for ModelReuse, most fingerprints exhibit
notable improvements at each query budget increment. After 100 (or 50) queries,
most fingerprints show a plateau. Thus, it appears that there exists an optimal
query budget, dependent on the benchmark but not on the fingerprinting scheme.
Finally, schemes based on negative sampling appear to suffer a lower variance
than adversarial-based fingerprints, especially on SACBench.

Although the performance of most fingerprints plateau after 50-100 queries, the
performance of some fingerprints (e.g. ModelDiff and SAC) suffers when the query
budget increases from 100 to 400 queries. This phenomenon is observable only for
schemes whose representations are based on a pairwise or a listwise comparison.
We believe that when the number of query points is increased, the self-correlation
increases regardless of the fact that a pair is positive or negative. Thus, the gap
between the positive pair distance and the negative pair distance decreases with
budget, which in turn decreases the performance of the fingerprint.

4. Fingerprinting benchmarks

Because there are no strong guarantees regarding Effectiveness and Robustness of
fingerprinting schemes, proper empirical evaluation is critical to assessing their
performance. The main difficulty of evaluation lies in the definition (and imple-
mentation) of realistic positive (h’ = h) and negative (b’ # h) model pairs. To do
this, we need to separate how the adversary steals the model (how to achieve A’ =
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Model leak Probit extraction Label extraction

Fingerprint same  quantize finetune transfer prune vanilla vanilla  adversarial
IPGuard 1.04+0 1.040 1.040 1.040 0944 01 064+ .02 01240 0.02 4 01
ModelDiff 1.0+0 1.0+o0 1.0 + o 1.0+0 0944 01 059+ .05 0144 02 0.16 + 07
Random 1.0+0 093+ .03 1.0Lo 048+ 2 071402 0.46+ .01 007+ .02 0.06 % 05
SAC 1.04+0 1.0+o 1.0 Lt o 1.0 L+ o 0.92 4+ o 08140 059402 0+to
ZestOfLime 1.0+0 1.0+ 1.0 4o 0.78 &£ .17 0.86 £ o 0.74 £ 02 038+ .05 0.294+ .11
AKH (ours) 104+0 10+o0 104+0 10+o0o 091401 078+ .01 0464+ 01 092+ 03

Table 4.3: TPR@O0.05 of the existing fingerprints with a budget of 100
queries. For each task, the best performance are highlighted.

h) and how the adversary tries to conceal their theft by modifying the stolen model
to avoid detection by the victim).

Stealing a model 1) Model leak: the adversary directly steals the architecture
and weights of the model h and uses them to solve the same task. This can happen
via an internal leak [187] or an attack on the company infrastructure [167]. 2)
(Adversarial) model extraction The adversary only has query access to the
source model and trains their model based on the probits or the labels of the source
model. The model extraction can either be probits or labels-based [168, 169]. In
addition, depending on the threat model, the architecture trained by the attacker
is not always the same as the victim model h and the adversary might not have
access to samples from the input domain [169].

Stolen model obfuscation Once an attacker has stolen the model A, they
will try obfuscating their model to hide their theft. To avoid detection by model
fingerprinting, the adversary may act on a combination of three aspects of the
model inference process. 1) Model/weights tampering As first approach, the
adversary can directly modify the model itself to remove potential watermarks
embedded in the weights of the model: weights pruning [188, 189], model quanti-
zation and finetuning or transferring the model to a small private dataset [165]. 2)
Input modifications The second concealment trick is to apply transformations
to the inputs fed to the model to limit the effect of adversarial inputs [180]: JPEG
compression, equalization, or posterization. 3) Output noise: Finally, to avoid
giving away too much information, the adversary can try to slightly alter the
outputs of the model, e.g. returning only the Top-K labels, averaging the outputs
over a neighbourhood of the input [190] or implementing model-stealing defences
[191, 192].
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4.1. The majority of benchmarked tasks are solved

The performance shown previously in Figure 4.1, Figure 4.4, Figure 4.5 were all
aggregated at a benchmark level. In this section, we separate the performance
of the fingerprints with respect to the model-stealing and obfuscation methods.
We will seek to answer the question What type of stealing and obfuscation
methods can be considered as resolved issues and, hence, on which ones
should practitioners focus? Positive pairs are grouped by task, i.e., how the
copied model h” was created from h, along with their corresponding negative
pairs. Each task corresponds to the combination of a stealing and an obfuscation
method. This decomposition is especially interesting since, as we will observe, a
large portion of the tasks are solved by all the fingerprints, while the rest, and
more complicated tasks, allows to discriminate the different fingerprints much
more clearly.

As for benchmark-aggregated performance discussed in the QuRD Section,
Table 4.3 shows that AKH is on par or surpasses all the previously introduced
schemes. More interestingly, Table 4.3 reveals that a large part of the tasks consid-
ered by ModelReuse and SACBench (namely the same, quantization, finetuning,
and transfer tasks) are completely solved by existing fingerprints, as well as by
AKH. The remaining unsolved tasks consist of model stealing by model extrac-
tion, using no obfuscation attempts. Surprisingly, adversarial label extraction is
easily detected by fingerprints based on negative sampling but not by adversarial,
random, or subsampling-based fingerprints. Model extraction detection is, thus, a
hard subtask of model stealing detection.

The results of Table 4.3 highlight an issue with the current benchmarks: trying
to detect if a suspected model A’ is the same as the victim’s h up to small
model perturbations (pruning, quantization, etc.) is fundamentally different from
detecting model extraction. These two objectives differ in difficulty to be detected
(as we mentioned earlier), but they also differ greatly in the efforts the adversary
has to consent to reach the same accuracy.

4.2. Why does SACBench look so easy?

As we observed in Figure 4.1, the performance of fingerprints varies greatly from
one benchmark to another. In this section, we try to uncover the reasons for
this variability. A fingerprinting benchmark is essentially a procedure to generate
positive and negative model pairs (h, k") by varying the model stealing and obfus-
cation methods. In the following, we investigate the properties of positive and
negative pairs for each benchmark, in order to better understand the reasons why
the various benchmarks seem to be unable to discriminate proposed fingerprint
schemes and are beaten by the simple baseline presented in the previous section.
ModelReuse and SACBench employ the same set of model stealing and obfusca-
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tion methods with two exceptions: ModelReuse uses model quantization as an
obfuscation strategy, while SACBench performs adversarial model extraction. This
explains the inferior performance of fingerprints based on adversarial sampling
(ModelDiff and IPGuard) on SACBench.

However, the slight choice difference of the stealing and obfuscation methods
included in ModelReuse compared to SACBench does not explain the exceptional
performance of AKH and SAC compared to the other fingerprints. To that end,
in Figure 4.4 we show the value of the conditioned Hamming distance J- (see
Proposition 4.1) for all model pairs (h,h’). We note that the variability of the
distance between h and h’ is much higher for ModelReuse than for SACBench.
This indicates that SACBench’s process for creating the positive and negative pairs
may not introduce enough diversity in the generated models, which could lead
to overestimating the performance of its fingerprints. However, as observed in
Figure 4.1, except SAC, all fingerprints have a comparable TPR@5% on SACBench
and ModelReuse. To explain the difference in performance of AKH and SAC, we
need to consider the separation between the distribution of §(j, 5,/ for the positive
and negative model pairs (h, h’). Figure 4.4 shows a better separation between
d(h,h") for positive and negative pairs in SACBench. On the other hand, both
datasets of ModelReuse show a large overlap in the distributions of distances of
positive and negative pairs. Thus, since SAC is based on negative sampling, it
appears that the generated positive and negative pairs of SACBench are especially
well suited to the SAC fingerprint they introduce.

5. Related works

Model-theft proactive defenses An alternative to fingerprinting is for the victim
to choose a proactive solution consisting in watermarking their model (see, e.g.,
[193, 194] for an overview), or by defending it using defenses implemented at
training or inference time [186, 191].

Connections with tampering detection A problem closely related to model
fingerprinting is tampering detection. The goal is to detect if a model served by a
platform is the intended model originally sent by the owner, or if the model has
been tampered with [43, 164], by backdoor attacks [195] for instance.

Connections with interpretable model distance To debug model creation and
to help ML audits, a body of work is interested in interpretable model distances.
Instead giving a single distance value, it also gives an explanation such as domains
on where the models differ the most [196] or a simple approximation of the
difference of the two models [197].
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6. Conclusion

Our systematic analysis of the existing model fingerprinting schemes and bench-
marks revealed a concerning evaluation artifact: the benchmarks studied are either
not discriminative or solved by our simple AKH baseline. Firstly, most tasks are
solved with almost any fingerprint. Secondly, the created victim/stolen model
pairs are too easy to distinguish from victim/benign model pairs. Moreover, our
QuRD framework reveals that schemes based on adversarial sampling are brittle
compared to schemes using natural images.

While some of the tasks of model stealing detection can now be considered solved,
several open challenges remain. One key issue is ensuring the robustness of fin-
gerprinting techniques against adaptive adversaries who may actively attempt to
evade detection. Furthermore, the development of effective fingerprints for other
modalities than images would require further exploration.
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CONCLUSION

Quand la terre claquera dans I'espace comme une
noix séche, nos ceuvres n’ajouteront pas un atome a
la poussiere. [...] et dire que nous le savons et que
notre orgueil s’acharne !

— L’Guvre, Emile Zola

In this manuscript, I studied black-box audits, in which the auditor only has query-
access to the studied predictor. Aiming to find the minimal additional information
required to derive guarantees in the case of a deceptive model provider, I intro-
duced the notion of audit priors (Chapter 2 and 3) and suggested to use model
fingerprinting techniques for efficient model monitoring (Chapter 4).

1. Summary of contributions

A common model provider defense to lobby against access to their data is that
only the outputs of the predictor matter, for they are the only user-facing part
of the system. Chapter 3 revealed however that without knowledge about the
training data, even with full access to the hypothesis class of the predictor, audits
are easily manipulated by deceptive model providers, especially as the capacity
of the underlying model grows. Having access to (train, test, or external) data is
thus necessary for robust audits. Yet, Chapter 2 exposed that, while necessary, this
data access is not sufficient. Labeled data can reduce the magnitude of the manip-
ulations that can remain undetectable. Unfortunately, the experiments exposed
that model providers can still game audits by exploiting label noise inherent to
a lot of prediction tasks involving tabular data. Finally, in Chapter 4, I explored
how the new “vetted researcher” white-box access mandated by the DSA, could
be used to improve external ML systems monitoring. Experiments revealed that
proper evaluation and comparison of model change detection is subtle: it requires
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to simulate the changes we want to detect in a realistic fashion. In the end, the
performance of the baseline I introduced advocates for simple methods.

Going back to the four steps of Al audits —-reconnaissance, systematization, mea-
surement, and monitoring (Subsection 1.2.4)- the methods and tools presented in
this manuscript provide defense mechanisms to the two last steps. The defenses
worked by exploiting labeled data (Chapter 2), model structure (Chapter 3) or
model weights (Chapter 4). All in all, audits are a matter of information gain.

2. Discussion

This manuscript exposed results for a specific type of predictor, namely binary
classifiers®, with a set of worst-case assumptions for the auditor: a single, easily
manipulatable, audit metric and a requirement to detect the smallest model change
possible. The applicability of the auditing framework presented in this manuscript
can thus be broadened in the following directions.

Beyond binary classifiers Extending our manipulation defenses to the evalua-
tion of other prediction tasks such as generative modelling or regression is a direct
avenue for future work. In fact, it might even be easier than it seems because of
how these systems are evaluated in practice. For example, the typical academic
evaluation of text generation models consists in finding difficult tasks and reducing
them to classification problems to calculate accuracy scores (e.g. MMLU [198],
GSM1k [199] or MathQA [200]). Thus, since the evaluation is reduced to a (multi-
class) classification task, it should possible to directly adapt the methods presented
in this manuscript.

Multiple audit metrics The audit setting I considered was voluntarily simple:
a single metric, measured by one auditor. To extend the results to a broader class
of separation and sufficiency metrics (recall Definition 1.4), we can build on the
insights of Chapter 2 and 3 that any fairness repair method can be transformed
into a manipulation strategy to leverage the recent advances in fairness without
demographics [201, 202]. Moreover, it was always implicitly assumed that the
auditor only measured one metric. A direct follow-up would be to audit whether
a model h is on the Pareto front of a set of metrics, for example that it satisfies a
predefined tradeoff between accuracy, fairness and privacy.

Incentive-aware change detection The performance of our very simple base-
line compared to much more complex methods in Chapter 4 revealed that the
current evaluation of model change detection is too simplistic. Moreover, there is
an issue of hyper-parameter tuning: all the methods require to tune a threshold
by simulating the model changes that are expected. This means that there are

8. except in Chapter 4 where we also considered multi-class classifiers
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no guarantees to detect model changes that have not been anticipated. The QuRD
python fingerprint library I introduced in Chapter 4 is a good starting point to
investigate these issues. Finally, when trying to verify if a model improved after an
audit, not all changes need to be detected, only those that affect the audit metric.
To that end, building on the simple AKH baseline, it would be possible to leverage
influence functions [203] to further refine the selection of the fingerprint query
set to the points that are most responsible for a change in the audit metric.

3. Perspectives

Concluding this manuscript, I would like to address some blind spots of ML
auditing I encountered during my PhD: the user and its assumed passivity, the cost
of auditing to our institutions and the growing impossibility to simply refuse to
be subjected to Al decisions.

3.1. Users back in the governance loop

External audits are a way to delegate the estimation of the users’ risk/utility
tradeoff of a system to an entity (the auditor) with greater resources and expertise.
My PhD work, and to a greater extent, the robust auditing literature, focuses on
the auditor and primarily treats users as passive agents to protect, or merely as
data providers, never as active agents that can participate in the audit process.
Realizing that they can collectively have a great impact on the model through their
data (used for training), the field of collective [204] action has initiated tools for
users to influence the Al systems they use.

A first solution to bring users back to the governance loop are reporting data-
bases [56]. Regulators or a mandated entity actively collect user reports from
users and continuously tests for systematic issues or disparate treatment evidence.
The key challenges with this approach are the same as online user reviews: the
entity collecting the reports must handle fake users and the fact that users will
have different harm threshold before reporting an issue. This problem is similar
to the issues in online reviews. Thus, to tackle these issues, bringing tools from
the field of robust sparse voting [205] might be a fruitful direction in defending
against malicious users.

An other solution is to increase the collaboration between users and auditors.
Users can share (potentially privatized) personal data to help the auditor create
their audit dataset. Conversely, by transparently sharing the conclusions of their
investigations, auditors can help users relate their experience to more systematic
analyses of the systems they use. A promising direction to allow users or auditors
aggregate these (potential noisy) sources of information, lies in the recent devel-
opments in the fields of testing with (private) advice [206] and prediction-
powered inference [207]. The idea is to use the auxiliary, potentially unreliable
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data, to decrease the variance of the audit test statistic, thus reducing the number
of necessary audit queries. In light of the results in this manuscript, it would be
also relevant to study the resistance of these methods to adversarial manipulations
of the predictions by the model provider.

Finally, before implementing the proposed auditing strategies, it is necessary to
study their impact on users, both as a path to accountability (do the added auditing
guarantees draws a path to better accountability ?) and as a data release mecha-
nism that could negatively impact those whose data will be used for the audit
(e.g. delivery platform workers penalized for donating their data to journalists
scrutinizing the platform).

3.2. Shifting the auditing cost to providers

In the theoretical literature on auditing, and testing in general, there is a strong
emphasis on the query budget: the number of queries to issue to the model
provider to achieve guarantees on what is measured. The reasons are two-fold:
less queries means a stealthier audit and lower data acquisition costs. This formal-
ization of auditing places the burden on the auditor to issue the queries, come-up
with computational methods to minimize the query budget and design tests that
are manipulation-proof, powerful, with a low False Positive Rate. Meanwhile, the
model provider only has to operate as usual, albeit with a few additional queries
from the auditor.

A promising avenue to shift the cost of ML governance to providers is the use
of cryptographic primitives to go from a harm-detection based governance to
a system certification scheme. While still early and computationally expensive,
primitives based on zero-knowledge proofs [208] and homomorphic encryp-
tion [209] can certify some properties such as fairness or accuracy of a model
whose verification only requires to check the model’s signature. See Section 2.2
for examples of schemes applied to auditing. Therefore, instead of tasking auditors
to monitor Al systems at the expense of taxpayers that might not even use said
systems, regulators could force high-risk systems to implement these scheme and
allow users to check the model signature to verify that they are using the right
model. However, implementing this in practice is not yet feasible because of the
computational toll of these cryptographic certification. Thus it would be fruitful
to investigate what kind of metrics can cheaply be certified cryptographically and
what kind of metrics require audit-type governance.

3.3. A broader outlook on algorithmic decision systems

Despite the apparent progress in the craft of ML predictors, the software systems
we use every day are more and more concentrated in the hands of a few companies,
feel arguably less and less useful and increasingly difficult to avoid.

102



Chapter 5. — Conclusion

First observed and theorized by Foucault [210] when studying how the current
form of prison and surveillance techniques came to be, the growth of communi-
cation technology has resulted in an intensification of power relations. Since then,
this link has also been observed in the history of the development of the internet
[211], which enabled a much broader, un-targeted surveillance of the population,
and in the recent developments of computer vision [212], which fuels surveillance
and identification technologies. It turns out that this power is currently held in
large parts by the tech companies providing the technologies we marvel at and
the online platforms we use everyday.

Moreover, the phenomenon of enshittification suggests that the interests of those
companies are not aligned with users’. Coined by Doctorow [213] enshittification
describes the life-cycle of online platforms: “First, they are good to their users; then
they abuse their users to make things better for their business customers; finally,
they abuse those business customers to claw back all the value for themselves.”.
While it is the most visible part [214], online platforms are not the only victims,
other sectors such as enterprise software or aviation [215] are also concerned. This
would not be an issue if users and businesses could easily get off those platforms,
but they have become so instrumental and pervasive in our everyday lives that
we are often not given a choice, especially when incorporated into government
services.

Therefore, beyond auditing methods, we need methods and tools to help users
hold the platforms they (are sometimes forced to) use accountable, not only for
their mistakes, but also for failing to take the documented harms they cause into
proper consideration when they design the tradeoffs of their systems.
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APPENDIX

A. Proof of Theorem 2.2

Notations
H Hypothesis class
F Set of fair models
X, Set of expectable models
DY Audit set ground truth
) Distance between the groundtruth and the set of expectable
model
h, Original model of the model provider
h,, Manipulated model of the model provider
X Input space
D Data distribution
x Sample from input space
Y Output space
Y Sample from output space
A Protected feature
z Sample
n dimension of Z

Let D, = (DX,DY,DY) C X x ¥ x G be the audit dataset used to create the
labeled-dataset prior (as in Definition 2.3). For the two groups 0,1 € G, define
G, ={z,y: (z,y,9) € D, and g =i}. Let £ = yf\Df be the restriction of the
set of models to the audit set. For any model A restricted to DX, the (relaxed)
demographic parity gap is u(h, D,) = ﬁ Zx7y€G1 h(z) — |G—10| Zx’yGO h(z).Ifh
outputs labels, then the 1 is the demographic parity gap, otherwise it is the relaxed
demographic parity gap. Recall that F = {h € Z : u(h,D,) = 0}

As F is the kernel of the linear transformation p, 7 is a hyperplane of £. As F
is a hyperplane of 2 of finite dimension, it is closed in 2.

Having an hyperplane lead to the natural definition of (hyper)cylinder, that we
use in the following theorem.
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A. Proof of Theorem 2.2

Definition 6.1 (Right cylinder) A right cylinder C(H, B) is the set of all points
whose orthographic projection on a hyperplane H lies in a set B with B a subset of
the boundary of H. B is called the base of the cylinder.

Theorem 6.1 (Detection probability, general) The probability P, that the auditor
correctly detects a malicious model provider trying to be fair isP(H, \ C(F,H, N
oF) | #,).

Proof (Theorem 6.1) The auditor correctly detects a malicious model provider
trying to be fair if and only if the manipulated model is fair but not expectable.
The manipulated model is fair but not expectable if and only if the orthographic
projection h,,,* of h, in & is not in K, N F. Thus, the manipulated model is
fair but not expectable if and only if 2, ¢ C(F, H, N 0F) (following Definition
Definition 6.1). As by assumption h,, € #, (Equation (2.2)), it means that h, €
HN\NC(F,H,NOF). |
We now restate Theorem 2.2 and prove it.

Theorem 6.2 (Prior-Uniform detection rate) Under the dataset prior of definition
Definition 2.3 with l(h,z,y) = €5(h(z) — y) the {5 norm, and the uninformative

prior assumption, the probability that the auditor correctly detects a malicious model
provider trying to be fair is

1 arccos(g) . 5 52 2

n

with DY the labels of the samples in D,, § = d(DY , &), the distance of DY to &
and W, the n-term of Wallis’ integrals.

Proof (Theorem 2.2) As established in Theorem 6.1, P, = P(H,\ C(F,H, N
o) | %,).

The probability P(H, \ C(F,H,N0F) | H,) is the probability to be in the
ball #, without the probability to be in the intersection between the ball 7,
and the cylinder C'(F, H, N 0F ). In the following, we denote V,, 4 .4(7, &, n) this
quantity.

As H, is a ball, its volume is:

‘/ball('n n) =

with T(2) = [ " t*~1e~* dt [216].

The volume of the intersection between the cylinder and the ball is the sum of the
three following volumes:
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« the solid cylinder with height between —¢ and ¢

« the spherical cap of #, that is above the previous cylinder (i.e. the part of 7,
with height between § and 7)

+ the spherical cap of 7, that is bellow the previous cylinder (i.e. the part of
J, with height between —0 and —7)

According to [217], the volume of each spherical cap is

n—1 )
5 n arccos(;)
V.. (T,0,n) = —— sin™?) 46

And the volume of the cylinder of height 24 is

Ven(7,0,m) = 25‘/1;a11(M,n — 1)

Thus,

Vaashed (75 6,m) = Vo (7,m) — 2V;ap<7—: 6,n) — V;yl(7_7 d,n)

n=1

noo n-1 . arccos( 2 n= T2 52 n—1
= ;Ei;) S K / ) sin™?) d9—257r i ( i )
T2 0

ney M)

According to Theorem 6.1, the probability that the auditor correctly detects a
malicious model provider trying to be fair is P(H, \ C(F,H,NOF) | H,).
That is to say, it is the ratio of V3,4 .4(7,d,n) over V{ ,,(7,n):

Fy = P(HN\C(F, H,N0F) | H,)
. ‘{iashed(Tﬂ 57 ’I’L)

Vl;all(Tan)
n+2 n-1 arccos(g) ) anlF n+2 n—1
:1_2F( 21)7Ti / Sin"(e)d0—25(7— &) ( 21)7rz
F(RT) T2 Jo T F(%) T2
r n+2 arccos(g) 2 ¢2 RTAF n+2
S 2R ) e gy 22 8T T
%) Jo VT r(=)

arccos g 2 52 nT_l
(/ %) sin™®) 4o — 5&)
0 ™

The function I' can be written with Wallis’ integrals as: W,, = ‘f?g:?:; with
vn, W, = fog sin™?) dg.

In the other hand,
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B. Proof of Corollary 2.3

5(T2 _ 52)”71 ) (r2 — 52)”71
TN - T n—1

_ é 72 _ 52 2

T T2
5 2\ T

—— 1=
7‘( 7'2)

Thus, P, =1 — WL (f;rccos(i) <in™® 49 — g( . %)%) .

B. Proof of Corollary 2.3

Corollary 6.3 (Detection rate lower bound) Ifn is even, the probability of detecting
manipulations is lower bounded by

2 2
wi(1-5) <ns
nT T

_ V/n+3—vn—1
=

Moreover, the lower bound is maximized when g

Proof (Corollary 2.3) By definition, P; < 1. We now prove the lower bound.
Following Theorem 2.2, we have:

1 arccos(g) o 5 52 2
Pd:l_W /0 sin (9)d9—;<1—ﬁ>

n

Decomposing W, (for n even) and using the positivity of sin on [0, 5].

jus

arccos(g) b}
w, / sin™(60)d6 + / sin™(0) d6
0

———
arccos ( Kl )

. 1 arccos(g) o (0\d6
= Wn/o sin ( )

\V

n—1
Finally, P; > Wig( — f—z) 2
We now set out to prove that the lower bound afcording is maximized when g =
—V"“L?’; Vn—1 Birst, define f(z) z R

z) = 7% (1—2?) * with the change of variable z =

g. We are interested in cases where 7 > 4, ie. 0 < z < 1.

f has an extremum iff f’'(z) = 0 somewhere in [0, 1]. The derivative f'(z),z €
[0, 1] is expressed as
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W, f'(z)=(1— xz)%l —(n—1)z%(1— 3;2)"773

= (1—x2)7(:c2+mgc—1)(x2—\/Hx—l)

Thus, on [0, 1], f’(z) = 0 for the following elements:

—vn—1++n+3
2

zo=1 and z; =

From a quick analysis of the second derivative f”(z) shows f(z,) <0 and

f(zy) > 0. Thus f is maximized at z,, i.e. 2 = _—Vn_12+"+3 |

C. Proof of Theorem 3.1

We now restate and prove Theorem 3.1

Theorem 6.1 (No need to aim) Let & = {0,1}*. For any audit set S C X and
hypothesis h € J¢,

diam J((h,S) =2—(P(X €S | X, =1)+P(X €S| X, =0))
Proof (Theorem 3.1) The proof is executed in 4 steps: decomposition of the value

of u(h, X) on S and S, decomposition of the u-diameter on S and S, solving the
optimization on the decomposed problems and conclusion.

Step 1: Decompose 1
Foranyhe H,SCX
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C. Proof of Theorem 3.1

u(h, ) =P(R(X) =1 | X4 = 1)~ B(h(X) = 1| X, = 0)
—Ph(X)=1|X,=1,XeSP(X €S| X, =1)

+P(h(X)=1]X,=1,X€S)P(XeS|X,=1)

-
—Ph(X)=1]X,=0,XeS)P(XeS|X,=0)
a—90
~P(M(X)=1]X,=0,XeS)P(XeS|X,=0)

1—a+d
—aPh(X)=1]|X,=1,X€8) —Ph(X)=1| X, =0,X€S))
p(h,S)

+1—a)(P(h(X)=1| X, =1,X€S) —P(h(X)=1| X, =0,X € 5))

u(h,S)

+6(P(A(X)=1| X, =0,X€S)—P(h(X)=1| X, =0,X €5))
= au(h, S)+(1—a)u(h,§)

+6(P(h(X)=1| X, =0,X€8)—P(h(X)=1| X, =0,X €3))

Step 2: Decompose the p-diameter
For any h,h’ € H (h*,S),

b, X) = (W, ) = o (u(h, S) = p(W, 8)) + (1= ) (1, 5) — u(w,5))
=0 since h(S)=h’(S)=h*(S)
HOP(X)=1]| X, =0,X€S) P (X)=1| X, =0,X€9))
=0 since h(S)=h’(S)=h*(S)

+6(P(h(X)=1|X,=0,X€S)—P(h(X)=1] X, =0,X€5))

Using the definition and separability of the p-diameter, we have

diam, (h*, ) = hegg&g,s)u(h, S) — h,eg%g*’s)u(h, S)

Therefore, by grouping the terms that depend on h and A’ in the previous devel-
opment:

110



Appendix

diam,, (h*, S)
= maxycgene,5) |(1 — (b, §) —P(A(X)=1] X, =0,X € 5)]
— MiNyres () [(1 — a)u(h’,§> —5]P’<h’(X) =1|X,=0,X¢€ §>]

Step 3: Solve each optimization problem
To solve the two optimization problems, we come back to the definition of .

= 1—a)P(h(X)=1|X,=1.X€S
s max {( AP(h(X)=1]X, =1, )

~(1—a+8)P(h(X)=1] X, =0,X€5§)}

= 1—a)P(h(X)=1|X,=1.X€S
s max {( )P(h(X)=1] X, =1, )

+(1—a+)P(h(X)=0]| X, =0,X€8)} —(1—a+9d)
Similarly,

= i 1—a)P(R(X)=1|X,=1.X€S
hear?<1;§1,s>{( P(h(X)=1|X,=1,X€¥)

~(1—a+)P(h(X)=1] X, =0,X€5§)}

= i 1—a)P(R(X)=1|X,=1.X€S
he;[n(l}g,s){( A)P(h(X)=1|X,=1,X€?)

+1—a+OP(A(X)=0| X, =0,X€S)} —(1—a+0)

We write h' (resp. h*) the minimizer of (resp. ).
1if zy=1and z€8 1if z,=0 and z€ 8
hi(z) =40 if r,=0 and z €8S hH(z) =10 if t,=1 and z€ 8
0 else 0 else

The optimizers h' and h* yield the optima
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D. Proof of Theorem 3.2

=—(1-a+d)+(1-a)P(lf®=1|X,=1,X€?5)

=1
+1—a+O)P(A =0]X,=0,X¢€¥)

=1
=1—«

=—(1-a+0)+(1-aP(hM®=1[X,=1,X€5)

=0
+(1—a+8)P(RX =0] X, =0,X €9)

=0
=—(1—a+9)

Step 4: Conclusion
diam , J((h*, S) = —

=1—-a)+(1—a+9)
=2—-(PXeS|X,=1)+P(X eS| X,=0)

D. Proof of Theorem 3.2

We now restate and prove Theorem 3.2
Theorem 6.2 (Memory and auditability) Consider S C X, d € }[gjct. Note m’ =
m — |z € S : d(x) = 1|. The u-diameter of F(d, S) is given by
min(‘l’A ﬂ?,m’) min(‘I_Aﬂg
+ —
| X 4l ’IA’

’
)

diam , H5(d, S) =

Proof (Theorem 3.2) In the proof of Theorem 3.1, we established the following
identity (for any hypothesis class thus for F %, and for any S and d*):
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diam,, F 9 (d*, S)

) dej{rgg();*’s){P<X €S| X,=1)PdX)=1|X,=1,X€5)

+P(X €S| X, =0)P(d(X)=0| X, =0,X€3S)}

) deﬂrﬁ%%}i*7s){IP’(X €S| X, =1)P(d(X)=1|X,=1,X€3)

+P(X €S| X, =0)P(d(X)=0]| X, =0,X€5)}

First, observe that in the two optimization problems, the value of the objective
function does not depend on the values of d on S. Moreover, the choices of the
labels d(z) for z € S can be made freely as long as d does not have more than m’ =
m— |z € S :d*(x) = 1] “1”s (because it has to use |z € S : d*(z) = 1] slots of
memory to store the answers of d* on S).

Therefore, the dictionary that optimizes is built by storing as many “1”s in

d on the entries of z € X', N S within the limits of the m’ slots left. This leads to

min(’xA N g‘, m’)
k¥

=P(XeS|X,=1) +P(X eS| X,=0)x1

Next, rewriting as a maximization problem, we get
=P(XeS|X,=1)+P(XeS|X,=0)

_deﬂrﬁ%&*7s){P<X €S| X,=1)P(dX)=0|X,=1,X€5)

+P(X eS| X, =0)P(d(X)=1| X, =0,X€38)}

Similar to the case of , the dictionary that optimizes is built by storing

as many “1”s in d on the entries of x € X, N S withing the limits of the m’ slots
left. This leads to

=P(XeS|X,=1)+P(Xe€5| X, =0)
min(‘x_Aﬂg
Tins

,m’)

—P(XeS|X,=1)+1-P(XeS|X,=0)

Composing the expressions of and , we get
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E. Proof of Corollary 3.1

min(’l’A NS
|2, S|

’
')

diam, H ! (d*,S) =P(X € § | X, =1)

min(‘x_Aﬂg‘,m’)
T

+P(X €S| X, =0)

Here, it is important to understand that in the notations P(X € S) or P(d(X) =
1), X is a random variable taking values in I’ with a uniform probabilitTr. There-

fore, P(X € 5| X, =1) = 2 ana P(x € 5| x, = 0) = %25 , which
simplifies the previous equation
min S|, m’ min(|X, NS|,m’
o (g ([FanS|m) min([T4nS],m)
diam , H Y (d*, S) = T + |I_A|
|

E. Proof of Corollary 3.1

We now restate and prove Corollary 3.1

Corollary 6.1 (Benign overfitting and auditability) Let X and F C {0,1}* be
any input space and hypothesis class. Assume that H exhibits benign overfitting with

respect to the sensitive attribute X 4 and its opposite 1 — X 4 °, then for any d < d,
and S € X4,

diam, H (h*,S) >P(X € S | X, =1)+P(X € S| X, =0)
—2P(XeSl)—2(1—-P(Xeb))

Proof (Corollary 3.1) Note oy = IP’(X €S| X, = 1) and oy = IP’(X €S| X, =
O). In the proof of Theorem 3.1, we established the following equality:

diam , J¢ (h*, S)

_ maxyepp s {nP(M(X) =1 X4 = LX €5) + aoP(h(X)=0] X, =
0,X€58)}

_ mingegee, s {aP(M(X) =1 X4 =1, X €5) + aoP(A(X) =0 | X, =
0,X€8)}

And

9. That is, Definition 3.3 holdsforc =x4andc=1—1x4
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= oy +ap — heg?ib)f,s){alP(h(X) =0|X,=1,X€35)

+aoP(h(X)=1| X, =0,X€§)}

Since J{ exhibits benign overfitting with respect to the sensitive attribute and
|S| < d,, there exists h € F (h*,S) such that P(h(X) =X,|Xe §> =1—c¢

Moreover,
P(A(X)=X, | Xe€8)=P(h(X)=1|Xe8 X, =1)P(X,=1|X€e?)
+P(h(X)=0] X €8,X,=0)P(X,=0| X €¥)

— a P_<X =5 P(h(X)=1|X €S, X, =1)
P(X, =0) B T v
aO—IP’(X =) P(h(X)=1| X €5, X, =0)

Since P(X, =0)+P(X,=1)=1,P(X,=0)>0and P(X, =1) >0, we
have

aP(h(X)=1|X €S X,=1)+a,P(h(X)=1| X €8§,X, =0)
>P(X, =DoyP(A(X)=1]| X €S, X, =1)

+P(X, = 0)ayP(h(X)=1]| X € §,X, =0)
=(1-eP(X€?)

Therefore, > (1— 5)IP’(X € ?)
With the same arguments, we prove <aygt+a —(1-— 5)]P’<X € ?).
To conclude, diam , J (h*, S) > 2(1 — 5)IP’<X € §> — (o + ). |
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F. Effect of the audit dataset size
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Figure 6.1: Evolution of the u-diameter with the size of the audit set S repre-
sented as a proportion of the total dataset size for the COMPAS dataset. Each
line represents an audited model, whose hyperparameters are either tuned
for the best generalization, either tuned for the highest capacity or tuned for

the lowest capacity. For each (model, hyperparameter) couple, the p-diameter

is averaged over 15 audit datasets.
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Figure 6.2: Evolution of the u-diameter with the size of the audit set S repre-
sented as a proportion of the total dataset size for the StudentPerf dataset.
Each line represents an audited model, whose hyperparameters are either

tuned for the best generalization, either tuned for the highest capacity or
tuned for the lowest capacity. For each (model, hyperparameter) couple, the

p-diameter is averaged over 15 audit datasets.
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G. Proof of Proposition 4.1
We now restate and prove Proposition 4.1
Proposition 6.1 (AKH guarantees) Consider h,h’ € Y* two models and o =
P(h(z) = c(z)) (resp. o =P(h'(z) = c(x))) their accuracy. Let 6 = dg, b
be the relative Hamming distance between h and h' and 0~ =P(h(x) #
h'(z) | h(x) # c(x)). The property test T, defined by AKH enjoys the following
guarantees:
If h="n" PD)[T,(h,h)=1]=1

d—(1—a')

11—«

It h+ K, B(D)[T;(hh) = 0] = ¢ >

Proof (Proposition 4.1) Case h = h’
In this case, Vo € X', h(z) = h'(x). Thus, T will always return 1.

Case h #+ b/

P(77"1) =0) =P(b: 2 ~ D, )[h(z) # I/ (z)]
=P(h(z) # h'(z) given h(z) # c(x))
P(h(z) # h'(z), h(z) # c(x))
P(h(z) # c(z))

—

We now decompose the event h(z) # h’(x) on the partition (h(z) = ¢(z), h(z) #
c(z)).

Using the inclusion {h(z) # h'(z), h(z) = c¢(z)} C {h'(z) # c(z)}
P(h(z) # h'(x), h(z) = c(z)) <P(W(z) # c(z))

Thus,
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I Details on the computation of the True and False Positive Rate

P(:TDU%’L’) = 0)

P(h(z) # W' (z), h(z) # c(z))
P(h(z) # c(z))

) <l-a
_ P(h(z) # b'(x)) — P(h(x) # b’ (2), h(z) = c(z))
P(h(z) # c(2))
d—(1—a) h
- 1—«

H. Evaluation Setup

The fingerprints we re-implemented are IPGuard, ModelDiff, SAC and
ZestOfLIME. We based our implementation on the descriptions of the schemes
in their respective papers and re-used part of the authors’ code when available.
We choose two benchmarks — ModelReuse and SACBench - spanning three
common vision datasets: Stanford Dogs [218], Oxford Flowers [219] and CIFAR10
[220] which we abbreviate as SDog120, Flower102 and CIFAR10. We used the
model weights released by the authors of the respective benchmarks. For each
experiment, we report the average (and standard deviation) over five runs for each
setting. The experiments were run on a compute cluster. The nodes were based on
an Intel Cascade Lake 6248 processor with 16Go Nvidia Tesla V100 SXM2 GPUs.

I. Details on the computation of the True and False
Positive Rate

The True Positive Rate and False Postive Rate are computed as follows. Consider
a fingerprint (as defined in the problem setting section) 7 : (¥%,4*) — {0,1}.
Define V to be a set of victim models and for each victim model h € V, S(h) is a
set of models stolen from h and U(h) is a set of models unrelated to h. A bench-
mark is a triplet B = (V, (S(h))ev, (U(R))nev)- The True and False positive Rate
reported in the paper are computed as follows.

T (h,h
rpr(e) - L 3 Do < (h 1) =1)
=V 2 ) o
mh W) =1) |
FPR(B |V|hezv )
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Model Hyperparameters Value range
LINEAR penalty None, 12
C 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000
PERCEPTRON penalty None, 12
alpha le-06, 1e-05, 0.0001, 0.001, 0.01

TREE max_depth 2,4, 8,16, 32, 64, 128
ccp_alpha 0.001, 0.003, 0.005, 0.007, 0.01, 0.05,

0.1, 0.2, 0.5, 0.0

GBDT max_depth 1,2,4,8
n_estimators 100, 200, 500
reg_lambda 0.0, 1e-6, 1e-3, 0.1, 1.0, 1e6, 1le7
max_leaves 0
learning_rate 0.3

gamma 0.0
min_child_weight 0.0
max_delta_step 0.0
subsample 1.0

reg_alpha 0.0
early_stopping_rounds None

Table 6.1: Value range for the hyperparameters of the models used in the

experiments.
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