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ABSTRACT

Machine learning-based prediction services are now widely deployed across in
dustries by companies, governments, and individuals. Yet, these services often rely 
on a complex AI supply chain, whose components (training data, models, infra
structure), while critical to their performance, are partially or completely hidden 
to the final users. Thus, to an external user or regulator, these prediction services 
appear as black-boxes, complicating their evaluation and opening avenues for 
manipulations. In the presence of deceptive model providers, this thesis aims to 
understand the fundamental limits to black-box auditing and designing protocols 
to provide guarantees beyond the black-box interaction model. This manuscript 
presents three contributions towards that goal. First, I present a formalization of 
this quest for the minimal assumption beyond the black-box as a prior construction 
problem and provide a new audit method leveraging the labeled data available to 
the auditor. Then, I study the benefits of requesting the hypothesis class used by 
the platform to inform the audit. Finally, in an attempt to cheaply detect post-audit 
attacks, I introduce a new model fingerprint baseline and theoretical analysis to 
detect model change.
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RÉSUMÉ EN FRANÇAIS

Les algorithmes d’apprentissage automatique ont trouvé de nombreuses applica
tions dans nos vies. Des algorithmes de traitement d’image permettant à nos 
smartphones de prendre des photos parfaites malgré des capteurs minuscules, 
à l’accélération des prévisions météorologiques, en passant par l’assistance à la 
rédaction, la prédiction de fraude, ou la détection de pathologies, l’apprentissage 
automatique est utilisé autant par les entreprises, les gouvernements que par le 
grand public. L’observation de son déploiement massif, particulièrement au travers 
du paradigme du « Machine Learning as a Service » (MLaaS), met en lumière un 
paradoxe structurel : alors que ces systèmes régissent des décisions à fort enjeu, ils 
demeurent, pour la majorité des acteurs, des « boîtes noires » hermétiques. Pour 
l’utilisateur final ou le régulateur, l’interaction se réduit à une interface d’entrée-
sortie, occultant totalement les données d’entraînement, l’architecture du modèle, 
ses paramètres internes et ses objectifs.

Dans ce contexte d’opacité, l’audit des systèmes d’apprentissage automatique 
émerge comme un instrument indispensable de gouvernance. Il se définit 
comme une procédure d’évaluation méthodique et indépendante visant à vérifier 
la conformité d’un système d’apprentissage automatique avec un ensemble 
d’exigences prédéfinies, qu’elles soient techniques, éthiques ou réglementaires. Le 
point de départ de ces travaux de thèse est l’adoption d’une approche d’audit qui 
prend en compte le comportement potentiellement antagoniste du fournisseur de 
services, rompant ainsi avec l’hypothèse de coopération qui sous-tend implicite
ment la majorité des protocoles d’audit actuels. En effet, dans un environnement 
économique concurrentiel, soumis à des cadres réglementaires stricts tels que 
l’AI Act européen, un fournisseur dispose d’incitations rationnelles à adopter des 
comportements stratégiques, voire trompeurs.

Ce manuscrit adresse donc ce scénario du pire cas : comment garantir la 
fiabilité, l’équité et la performance d’un algorithme lorsque son concepteur tente 
activement de dissimuler ses défaillances ? Bien-entendu, si l’auditeur ne dispose 
d’aucune autre information ni aucun autre accès au système qu’au travers de 
requête-réponse, il n’a aucun moyen de détecter quelconque manipulation de la 
part du fournisseur de services. Pour aborder ce problème, tout au long de cette 
thèse nous nous efforcerons de répondre à la question
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Afin de dépasser le modèle de l’audit en boîte noire, de quelle informa
tion supplémentaire l’auditeur a-t’il besoin pour obtenir des garanties 

de validité de ses mesures?

Chapitre 1: Introduction
Ce chapitre introductif pose le contexte général de la thèse : l’omniprésence des 
services de prédiction basés sur l’apprentissage automatique dans des secteurs 
critiques et la complexité croissante de leur chaîne d’approvisionnement. Nous ef
fectuons un bref rappel des notations et pratiques régissant la création de systèmes 
d’apprentissage automatique. Ensuite, ce chapitre détaille les différentes étapes 
d’un audit: la définition des objectifs, les mesures utilisées et les différents niveaux 
d’accès au système. Enfin, nous présentons les motivations qu’un fournisseur 
aurait à manipuler un audit et le modèle de sécurité correspondant: un fournisseur 
qui manipule les réponses du modèle sur l’ensemble d’audit pour paraître équitable 
et performant.

Chapitre 2: À la recherche d’un a priori
Dans ce deuxième chapitre, nous abordons la formalisation de l’audit comme 
un problème de construction d’une connaissance a priori pour l’auditeur. Face à 
l’impossibilité théorique de garantir la conformité d’un modèle boîte noire sans 
hypothèses supplémentaires, nous introduisons le cadre de l’audit avec a priori. 
Nous illustrons notre proposition à travers l’utilisation de données étiquetées dont 
disposerait l’auditeur comme source de cet a priori pour contraindre l’espace des 
modèles possibles et détecter les manipulations.

Nous développons une analyse théorique démontrant que la connaissance de la 
distribution des données permet de borner la capacité de nuisance du fournisseur. 
Nous introduisons le concept d’« inéquité dissimulable », qui quantifie l’ampleur 
de l’inéquité de traitement qu’un fournisseur peut cacher tout en satisfaisant les 
contraintes de l’audit.

Sur le plan empirique, nous évaluons cette méthode sur des jeux de données 
réels (comme CelebA et ACSEmployment). Nos expériences montrent comment 
l’inéquité dissimulable évolue en fonction du budget de requêtes de l’auditeur 
et des différentes stratégies de manipulation du fournisseur. Nous mettons en 
évidence que si l’accès à un jeu de données étiqueté renforce l’audit, il existe 
toujours une marge de manœuvre pour le fournisseur, qui diminue à mesure que 
l’auditeur acquiert plus de données.
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Chapitre 3: Connaissance de la classe d’hypothèses
Ce chapitre examine une hypothèse alternative pour renforcer l’audit : la connais
sance par l’auditeur de la classe d’hypothèses (la famille de modèles et l’algorithme 
d’entraînement) utilisée par le fournisseur. Nous cherchons à déterminer si cette 
information permet de concevoir des audits plus robustes contre les manipula
tions, notamment via des stratégies d’audit actif où l’auditeur choisit ses requêtes 
en fonction des réponses précédentes de la plateforme.

Nous démontrons que pour de nombreuses classes de modèles, aucune stratégie 
d’audit actif ne surpasse l’échantillonnage aléatoire simple. Nous établissons un 
lien formel entre la manipulabilité d’une classe de modèles et sa capacité (mesurée 
par la complexité de Rademacher). Plus un modèle est complexe et capable 
d’apprendre des motifs variés, plus il est facile pour le fournisseur de dissimuler 
son comportement réel sans être détecté par l’audit.

L’analyse est illustrée par l’étude des modèles « dictionnaires » et étendue aux 
modèles classiques (arbres de décision, modèles linéaires, réseaux de neurones). 
Les expériences confirment que pour les modèles modernes à grande capacité, 
malgré la connaissance de la classe d’hypothèses par l’auditeur, le fournisseur peut 
aisément tromper l’audit. Le coût en termes de performances pour le fournisseur 
de tromper l’audit reste négligeable, ce qui souligne les limites de cette approche 
pour la régulation des systèmes d’IA complexes.

Chapitre 4: Surveillance des changements de modèle
Face aux limites de l’audit ponctuel identifiées dans les chapitres précédents, nous 
nous tournons dans ce chapitre vers la surveillance continue via l’empreinte de 
modèle (fingerprinting). L’objectif est de détecter si le modèle déployé a été modifié 
après l’audit par le fournisseur, par exemple pour réduire les coûts d’exploitation 
ou favoriser un groupe d’utilisateurs.

Nous proposons le cadre d’analyse QuRD (Query, Representation, Detection) pour 
déconstruire et évaluer les méthodes de fingerprinting existantes. Cette analyse 
révèle que la littérature actuelle souffre de faiblesses méthodologiques : les bench
marks utilisés sont souvent triviaux et les méthodes complexes basées sur des 
exemples adversariaux s’avèrent fragiles.

Nous introduisons une méthode de référence simple mais efficace, nommée AKH, 
qui performe aussi bien, voire mieux, que les techniques de l’état de l’art sur la 
plupart des tâches de détection de vol ou de modification de modèle. Les résultats 
expérimentaux sur des benchmarks comme ModelReuse et SACBench montrent 
que des stratégies simples d’échantillonnage sont souvent suffisantes pour détec
ter les changements. Nous concluons que la complexité des méthodes actuelles 
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n’est pas justifiée et recommandons l’usage de bases de référence robustes pour 
les futurs travaux de surveillance.

Chapitre 5 : Conclusion
Le dernier chapitre synthétise les apports de la thèse. Nous avons montré que 
l’audit boîte noire pur est intrinsèquement limité face à des adversaires capables 
de manipulations. Les tentatives pour renforcer l’audit par la connaissance de 
la classe d’hypothèses se heurtent à la grande capacité des modèles modernes, 
qui permet de cacher des comportements déviants avec un coût minime pour le 
fournisseur.

Nous discutons des implications de ces résultats pour la gouvernance de l’IA. 
Puisque l’audit technique seul ne suffit pas à garantir la fiabilité, nous suggérons de 
déplacer la charge de la preuve vers les fournisseurs (par exemple via des certificats 
cryptographiques, bien que coûteux) et de réintégrer les utilisateurs dans la boucle 
de gouvernance. Enfin, nous élargissons la perspective aux dynamiques de pouvoir 
inhérentes aux systèmes algorithmiques, soulignant que les solutions techniques 
doivent s’accompagner d’une réflexion politique et sociale sur le contrôle des 
infrastructures numériques.
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1
Snowball conjured up pictures of fantastic machines 
which would do their work for them while they 
grazed at their ease in the field or improved their 
minds with reading and conversation.

— Animal Farm, Orwell

From the image processing algorithm enabling our smartphones to take pixel-
perfect pictures despite tiny sensors [5] to speeding-up weather predictions [6, 7], 
and providing writing assistance [8], Machine Learning (ML) systems have found 
ways in our pockets and in our lives. Because it allows to analyze and use the huge 
amount of data harvested along the development of the internet, Artificial Intelli
gence (AI) has enabled technologies that would not have been feasible otherwise. 
Among them, we could cite speech recognition, translation, information retrieval, 
object recognition, recommender systems, large scale biometric identification or 
targeted online advertising.

Despite the growing social and individual impact of the decisions made by these 
ML systems, the data and proprietary algorithms that run them are obscured by 
their model providers, presented to the public as a black-box that requires no user 
understanding. This lack of transparency creates an accountability gap. Without 
insight into internal workings, decision logic, and training data, it is virtually im
possible for users or regulators to verify claims of performance, detect harm, or 
assign liability for negative outcomes. Thus, the responsibility to scrutinize these 
ML systems, hold their model providers accountable and raise public awareness 
on how to use them has fallen on scientists, journalists and regulators. In this 
setting, the present manuscript studies audits as a crucial tool to hold ML systems 
providers accountable to their users and society.

A Machine Learning audit is an independent, systematic verification of claimed 
properties of a ML system. ML audits have been used to verify claims on 
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performance metrics and disparities [9], privacy leakage [10] and safety measures 
[11]. However, effective auditing comes with its own challenges. It requires the 
auditor to collect data that is both representative of the system’s actual use case 
and relevant to the tested property. Moreover, auditors have limited access to the 
studied ML systems, often restricting them to input-output queries, interacting 
with the system as a black-box. Finally, the complex nature and massive scale of 
modern ML models makes it extremely challenging to understand the causes of 
discrepancies or undesired outcomes in predictions, even when observational data 
is available.

As if the auditing task was not complicated enough, the existing ML auditing 
literature has overlooked a critical factor: model providers have incentives 
to evade, cheat or manipulate ML audits. Because of the large data and 
compute requirements [12], emerging data licensing practices [13], and strategic 
partnerships [14, 15], companies providing ML systems are incentivized to act as 
monopolistic profit machines [16]. As a result, thanks to its monopoly position, the 
AI system provider can present whatever output they want to their users without 
risking churn. It thus becomes rational to alter what is presented to the auditor to 
pass the audit without having to modify the system exposed to the users. In the 
end, the provider only has to detect the audit (e.g. by detecting the use of public 
evaluation datasets, detecting specific IP addresses or looking for specific query 
patterns) and manipulate what is exposed to the auditor (e.g. alter the data, 
predictions or internal documents sent to the auditor) to pass the audit without 
having to modify the system exposed to the users.

Even forcing the provider to grant the auditor full access to the ML system would 
not completely alleviate manipulations: how would the auditor know if they are 
not in a sandbox? Therefore, in this manuscript, I seek a sensible trade-off: con
tinue to treat the provided APIs and user interfaces of the AI system as black-boxes 
but look for additional information to help interpret and detect manipulations 
of the audit results. As obtaining this additional information can be costly for the 
auditor, one of the challenges will be to understand how much is needed.

In light of how easy it is to manipulate ML audits and how important they are 
to hold ML providers accountable, the following question will guide us along the 
manuscript.

To go beyond the black-box model, what minimal additional informa

tion should the auditor request to achieve meaningful audit validity 
guarantees?

The purpose of this chapter is first to establish some background and notations 
I will use to describe ML systems (Section 1.1) and their evaluation via ML 
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Chapter 1. – Introduction

Data collection
𝐷train / 𝐷test

• privacy
• fairness
• unsafe content

Architecture & loss
ℋ︀ / 𝑙(ℎ, 𝑥, 𝑦)

• average v.s. worst case
• memorization

Training
min𝜃 𝐿(ℎ𝜃, 𝐷train)
• bias amplification
• poisoning attack

Model serving
ℎ𝜃(𝑥)

• model misuse
• model stealing
• fraudulent provider

Figure 1.1: The Machine Learning pipeline and examples of challenges asso
ciated with each step.

audits (Section 1.2). Then, I will detail how the interactions between the auditor 
and the model provider can be weaponized by the model provider to game the 
audit (Section 1.3). Finally, I will succinctly present the contributions of this thesis 
(Section 1.4).

1. A primer on Machine Learning systems
The term Machine Learning was coined by A. Samuel in 1959 to describe computers 
playing each other to learn checkers [17]. The reason we turn to Machine Learning 
is to transform data into predictions, e.g. about the weather, the next word I 
will type on my keyboard or the presence of a cat in an image. There are a lot 
of moving parts in modern ML systems: prediction often go through a series of 
filters and business rules before finally reaching the user, the training data is 
continuously collected, the model providing the predictions is regularly retrained 
and the quality of predictions is monitored. For simplicity, I will use the following 
convention: the predictor will refer to the end to end ML system, whereas the model 
will designate the single, instantiated and trained ML model. For example, in a 
product that detects hate speech, there might be a model to embed the text into 
vectors, a classifier trained separately and a layer to abstain when the confidence is 
too low. The predictor is the entire pipeline, while embedding model, the classifier 
and the uncertainty layer are all different models.

The practice of predictive model building can be stylized in four steps: 1) data 
collection, 2) architecture and loss choice, 3) training and evaluation and finally 4) 
model serving. The purpose of this section is threefold: to define notations used 
throughout the manuscript, to provide a general background on the craft of train
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ing ML models, and to highlight well-known pitfalls and systemic vulnerabilities 
that can arise at each of the four stages.

1.1. Data collection

The first step to create a predictor is to collect data related to the problem at 
hand. This data could be images, texts, physical measurement, anything that can 

ultimately be represented as numbers or vectors. Each data point 𝑥 is paired with 

a target prediction 𝑦. The space of all possible points is called the input space 𝒳︀, 

the space of all targets, the output space 𝒴︀.

In supervised learning, the target is a label or value, also called ground truth, 
observed when collecting the data point. It describes the observed outcome for 
the piece of data if refers to, e.g. the animal pictured in the image, or the temper
ature associated to the measured sensor voltage. Otherwise, the target could be 
the data point itself (e.g. in generative modeling), a transformed version of the 
data point (e.g. in machine translation) or even a textual description (e.g. in image 

captioning). Once collected, the data is split into a train dataset 𝐷train ⊂ 𝒳︀ × 𝒴︀ 

that will be used to build the predictive model and a test dataset 𝐷test ⊂ 𝒳︀ × 𝒴︀ 
that will be used to evaluate it.

How the data is collected, its quality, and diversity directly affects the downstream 
performance of the predictor [18] but not only.

Privacy  The collection of Personally Identifiable Information (PII) in the training 
data exposes the privacy of people, even if the data is not shared outside of the ML 
system. In fact, the predictions can be used to reconstruct private information in 
the training data [19], guess if some person was in the training data [20] or even 
discover the name of a person from a portrait image [21].

Fairness  Biases in the data can create large performance disparities in the trained 
predictor. For example, computer vision models are very good at learning short
cuts [22]: if all images of cows are with a blue sky background then any cow image 
in the U.K. will not be correctly classified.

Unsafe content  With the imperative to build ever larger datasets, from all 
corners of the Internet, filtering harmful content such as Child Sexual Abuse Ma
terial (CSAM) [23] becomes crucial but remains difficult. Worse, against common 
intuition, just scaling the dataset size can actively increase racial and gender biases 
of downstream predictions [24].

1.2. Model architecture and loss

Once the model provider collected the data, they have to choose how to generate 
predictions and what a good prediction is. How to generate predictions is specified 
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by a model architecture or hypothesis class. A model architecture is a parametrized 
class of functions

ℋ︀ = {ℎ𝜃 : 𝒳︀ → 𝒴︀ | 𝜃 ∈ Θ}, (1.1)

in which functions, parametrized by a set of parameters 𝜃 ∈ Θ, take a data point 
as input and return a prediction as output. The quality of a prediction is specified 
by the model provider via a loss function

𝑙 : ℋ︀ × 𝒳︀ × 𝒴︀ → ℝ+. (1.2)

The loss takes a prediction function ℎ𝜃 ∈ ℋ︀, a data point 𝑥 ∈ 𝒳︀ and a target 

prediction 𝑦 ∈ 𝒴︀ and returns a positive value 𝑙(ℎ, 𝑥, 𝑦) that is low if the predic

tion ℎ𝜃(𝑥) is close to the target 𝑦 and high otherwise. Finally, to estimate the 

performance of its prediction function ℎ𝜃, the losses of individual data points are 

aggregated into a single value called the empirical risk 𝐿(ℎ𝜃, 𝐷train).

Definition 1.1 (Empirical risk) Given a predictor ℎ : 𝒳︀ → 𝒴︀, a dataset 𝐷 ⊂ 𝒳︀ ×
𝒴︀ and a loss function 𝑙, the empirical risk is defined as

𝐿(ℎ𝜃, 𝐷train) = 1
|𝐷train|

∑
(𝑥,𝑦)∈𝐷train

𝑙(ℎ𝜃, 𝑥, 𝑦).

The choice of loss function defines how the optimal model behaves, and, as with 
the data, the choice of loss and architecture have an impact beyond the perfor
mance of the resulting predictions.

Average case  Choosing to minimize the average loss, while mathematically 
convenient, can be harmful when there are identifiable groups in the data (e.g. 
genders, races, income, location …). In fact, even if a model has a low empirical 
risk, there might exist individuals or groups on which the model perform much 
worse than the average [25].

Memorization  Modern chat-bots are prone to memorization. For example, 
prompting LIama 3.1 70B with the beginning of a sentence of Harry Potter will 
make it regurgitate large parts of the book [26]. It turns out that the number of 
parameters of the chosen architecture plays a crucial role in how much data it 
will memorize [27]. This has implications on intellectual property: model providers 
argue that collecting data to create a model is fair use, i.e. the model is a substantial 
transformation of the data. However, if the model regurgitates the data easily, it 
might be considered as a copy [28].

1.3. Model training

Having collected the necessary training data and chosen a suitable architecture 
and loss function, the model provider now has to find a good choice of parame
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ters 𝜃 ∈ Θ according to its loss function. Choosing “good” parameters values 𝜃∗ 
amounts to minimizing the empirical risk on the train data.

𝜃∗ ∈ arg min
𝜃

𝐿(ℎ𝜃, 𝐷train) (1.3)

Since deriving the exact analytical solution for 𝜃∗ is infeasible in general, the 
parameters are computed using variants of gradient descent. First introduced 
by A.-L. Cauchy to solve systems of equations [29], gradient descent iteratively 

refines an initial guess 𝜃0 towards the optimal solution 𝜃∗. In the convex setting, 

i.e. when the empirical risk is convex in the parameter 𝜃, theory tells us that we 
are guaranteed to reach the global optimum using gradient descent. See [30] an 
in-depth overview of convergence results.

However, the massive size of the train set 𝐷train makes computing the risk gradient 

∇𝜃𝐿 prohibitively costly in terms of memory. Modern optimization methods thus 
rely on improvements of the Stochastic Gradient Descent (SGD) [31] algorithm. 

To avoid computing ∇𝜃𝐿, the idea is to sample a batch 𝐵 ⊂ 𝐷train of 𝑏 points 

and compute the gradient ∇𝜃𝐿(ℎ𝜃, 𝐵). The choice of optimization method is not 
benign. Not only it requires tuning important hyperparameters (e.g. learning rate 

or the batch size 𝑏), it also carries fairness and security risks.

Bias amplification  Models reproduce the bias in the training data, they also 
exacerbate it. It has been shown that the imbalance, a.k.a. the difference in the 
number of training sample from two groups, slows the training dynamics of the 
minority group [32]. As a result, classical training techniques such as gradient 
normalization and early stopping favor even more the majority class, almost 
suppressing the impact of the minority on the final model [33].

Poisoning attacks  One way to guarantee an unbiased SGD estimate of the 

full gradient is to sample the batches 𝐵 uniformly from 𝐷train. However, just by 
reordering data batches, an adversary can insert any behavior in the model (i.e. 
poison it) without altering the data itself or the rest of the training procedure [34].

1.4. Model serving

Once all the data, architecture and training techniques have been chosen, the 
challenge is to reduce as much as possible the cost of serving the predictor. With 
models sizes continuously increasing, optimization of the serving phase, via com
binations of model sparsity [35] or quantization [36] has become more common.

All of these operations need to be tuned correctly as they can greatly affect the 
performance of the resulting predictor. In addition, even if the model was perfectly 
trained and thoroughly evaluated, the data it was based on might become outdated 
due to distribution shifts [37]. It requires continuously collecting new data and 
re-training or adapting the model. Finally, at this model serving stage anybody 
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can finally access the model or its predictions, which involves an additional set of 
challenges.

Model misuse  The content produced by generative models have reached a dis
turbing level of fidelity with original content. Without citing the litany of potential 
misuses of this fidelity, one example is the generation of non-consensual intimate 
images [38], sometimes, by teenagers [39]. Preventing such misuse is not only 
technically difficult, it also requires a discussion on what to censor and who takes 
the decision. A discussion that large model providers have for now tried to elude.

Model stealing  Often, model providers do not return only raw predictions. 
When serving the model via an Application Programming Interface (API), they 
also include other useful information such as the model confidence or even the 
prediction scores (the score the predictor assigns to each possible prediction). All 
this information can be exploited by malicious users to steal the functionality or 
the behavior of the predictor [40, 41], which is hard to defend against without 
decreasing the utility of the victim model [42].

Fraudulent provider  In the two previous points, the risk came from the user 
abusing the predictor, this last risk comes from the provider. Because hosting and 
serving larger and larger ML models is costly, model providers have incentives to 
overcharge users. For example, they could present a quantified or altered model 
in place of a full-precision model [43], use lower-grade inference hardware [44], 
or in the context of chat-bots, exploits the subtleties of tokenization to charge the 
user more tokens than they used [45].

§

In the last four subsections, I briefly introduced the craft of ML system creation, 
brushed on the complexity of creating practical and useful predictors, as well as 
some of the risks introduced by these systems. In the next section, I will address a 
pressing question that I have purposefully eluded until now: how and who should 
evaluate those predictors?

2. Machine learning audits
Selling Machine Learning products is a balancing act between performance, cost 
and security. Thus, to have their interests considered, users need to be able to 
weight in on the scale. To that end, as independent evaluations, audits can form 
a base on which users and regulators can ask the platform to rectify their system 
or, in the absence of action, take the matter to court.

1. Birhane uses the terminology AI audit, when we used ML audit. Both describe audits of systems 
that provide predictions, irrespective of the actual algorithms, AI or ML, behind those decisions.
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Definition 1.2 (ML audit [2]) A ML1 audit is defined as any independent assessment 

of an identified audit target via an evaluation of articulated expectations with the 

implicit or explicit objective of accountability.

The goal of this section is to dissect this definition and provide some context on 
ML audits.

2.1. Why? “the objective of accountability”

Audits have a long history [46, 47], which has only recently been joined by algo
rithmic audits [48]. Original form of audits served as a check against accounting 
fraud, they held the citizen in charge of monetary transfers accountable [47].

Modern ML systems now influence our lives beyond financial considerations. 
Some, such as social benefits fraud detection systems, impact people directly. 
Some, as RealPage [49], affect society indirectly, by acting as a collusion mecha
nism between landlords leading to global rent increase. The objective of ML audits 
is to detect and publicize these effects in order to incite model providers to correct 
them to avoid bad publicity.

In addition to incentives for better systems by targeting the reputation of model 
providers, audits are also a ML governance tool [50]. The European Union (EU) 
has had directives (i.e. goals that have to be implemented by member states) that 
specifically address the notion of equal treatment between individuals since the 
early 2000s. Recognizing the ever increasing autonomy delegated to ML systems, 
the EU has produced a digital regulation (i.e. binding acts that apply as is across the 
EU) package, the Digital Services Act (DSA) [51], Digital Markets Act (DMA) [52] 
and AI Act [53], to face the new risks they introduce. The enforcement of these 
three regulations revolve around the idea of regular risk assessments, with more 
stringent requirements for services with higher risks. In this setting, ML audits act 
as tools for regulators to enforce these regulations. Given the legal consequences 
of non-compliance, it it thus crucial to ensure the robustness of ML audits.

2.2. What? “the evaluation of an identified target”

Nobody enjoys being reduced to a number, let alone aggregated with their peers 
into a bar plot. Yet these are the two fundamental assumptions underlying how 
we evaluate ML systems: we model users as a distribution and we summarize their 
experience through metrics.

Metrics can be grouped into two categories: functional metrics, which measure 
performance, and non-functional metrics, which measure constraints.

Functional metrics  Functional metrics measure how well a system achieves 
its goals. For predictors, they measure what kind and how many mistakes the 
model made. Among them are accuracy (the proportion of correct predictions), 
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True Positive Rate (TPR) (proportion of correct predictions among predictions that 
should have been positive), False Positive Rate (FPR) (the proportion of wrong 
predictions among predictions that should have been negative).

Definition 1.3 (A few functional metrics) Let ℎ : 𝒳︀ → 𝒴︀ be a predictor, and (𝑋, 𝑌 ) 
random variables following the joint (input, target) distribution. For TPR and FPR, ℎ 

is assumed to be a binary classifier.

Accuracy(ℎ) = ℙ(ℎ(𝑋) = 𝑌 )

Brier(ℎ) = 𝔼[(ℎ(𝑋) − 𝑌 )2]
TPR(ℎ) = ℙ(ℎ(𝑋) = 1 | 𝑌 = 1)
FPR(ℎ) = ℙ(ℎ(𝑋) = 1 | 𝑌 = 0)

Non-functional metrics  Having satisfactory performance is a requirement for 
a predictor to be released. However, a broad range of other factors influence the 
useability of a predictor in practice. These factors are grouped under the umbrella 
of non-functional metrics. Common examples are robustness, bias or privacy; in 
Definition 1.4 I introduce three fairness metrics for classification. For a broader 
overview, the reader can refer to [25].

Definition 1.4 (Group fairness metrics) Assume each input point 𝑥 ∈ 𝒳︀ can be 

associated to a group 𝑔 ∈ 𝒢︀. Let ℎ : 𝒳︀ → 𝒴︀ be a predictor, and (𝑋, 𝑌 , 𝐺) random 

variables following the joint (input, target, group) distribution.

• Demographic Parity is a measure of independence [25] between group member

ship and prediction.

DParity(ℎ) = ℙ(ℎ(𝑋) = 1 | 𝐺 = 1) − ℙ(ℎ(𝑋) = 1 | 𝐺 = 0)

• Equalized Odds is a measure of separation [25], i.e. independence of the predic

tion and the group conditioned on the target 𝑡 ∈ 𝒴︀.

EOdds𝑡(ℎ) = ℙ(ℎ(𝑋) = 1 | 𝑌 = 𝑡, 𝐺 = 1)
−ℙ(ℎ(𝑋) = 1 | 𝑌 = 𝑡, 𝐺 = 0)

• Group Calibration is a measure of sufficiency [25], i.e. independence of the target 

and the group, conditioned on the prediction 𝑡 ∈ 𝒴︀.

GCal𝑡(ℎ) = ℙ(𝑌 = 1 | ℎ(𝑋) = 𝑡, 𝐺 = 1)
−ℙ(𝑌 = 1 | ℎ(𝑋) = 𝑡, 𝐺 = 0)

The audit dataset  Definition  1.3 and Definition  1.4 are defined in terms of 
probabilities with respect to an input, target, and group distribution (that we will 

call 𝒟︀). However, in practice, these probabilities are not directly accessible during 

the audit. Thus, to run the audit, an evaluation dataset 𝐷test is sampled from 𝒟︀. 
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Figure  1.2:  The three actors of an audit. The user gets utility from the 

ML system via the model predictions, measured by the loss 𝑙. The model 
provider gets utility proportional to its number of users. The auditor’s 

goal is to check the performance of the predictor ℎ for the users and the 
performance disparities between groups (highlighted in orange). The easiest 

case would be the auditor being able to ask users for interaction data (⇢ 
arrows). However, for privacy and computational reasons, they instead scrape 

or query the predictor directly (⇢ arrows).

Then, the entity running the evaluation collects the predictions of ℎ on 𝐷test and 
aggregates them into a quantity that should be close to the true value of the metric. 
This poses an issue for external audits: how can we be sure that the collected data 

follows the distribution 𝒟︀ assumed by the metric?

2.3. Who, and for whom? “an independent assessment”

The audit game gathers three players: the user, the model provider and the auditor. 
They all have different goals, different access and interactions with the predictor 
and different background knowledge about the task solved by the predictor. Before 
I describe the different access and interaction levels, let me introduce the three 
protagonists (pictured in Figure 1.2).

The user  is any party (individual or organization) that derives utility from the 
predictor provided by the model provider. This includes active users, who initiate 
prediction requests (e.g., submitting queries to a model), and passive users, who 
experience the consequences of predictions without direct engagement (e.g., 
targets of algorithmic decision-making). In two-sided markets, such as digital 
marketplaces, the user role may extend to both buyers (benefiting from predictive 
recommendations) and sellers (gaining exposure through the predictor’s output).

The model provider  refers to the entity hosting the predictor. It could be the 
entity who built the predictor, collected the training data, but can also be just a 
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Data 𝐷 Predictions ℎ𝜃(𝑥) Model ℎ𝜃

D0: None P0: None M0: None

D1: Aggregated 
statistics

P1: Raw predictions 

ℎ𝜃(𝑥) ∈ 𝒴︀
M1: model class ℋ︀

D2: Training set 

𝐷train

P2: Logits/probits

ℎ𝜃(𝑥) ∈ ℝ|𝒴︀|
M2: weights 𝜃

D3: User logs P3: Explanations M3: training objective 𝑙

Figure 1.3: Examples of different access levels to the data, predictions and 
model used in the creation of a ML system.

link in a larger ML supply chain. In this manuscript, we assume the model provider 
has full access to the predictor, and in particular to its code, weights and training 
data. The model provider sells predictions and is rewarded in proportion to the 
perceived accuracy of its predictions.

The auditor  refers it the party that seeks to evaluate the predictor provided to the 
users. It includes journalists, auditing firms, regulators or even user collectives. 
Because of limited resources and knowledge, users cannot all run a full audit each 
time they suspect the predictor of wrongdoing. Therefore, the auditor serves as 
an agent representing the interests of the user in hope that the greater resources 
and expertise of the auditor will force the model provider to act more than in the 
case of a single user.

Access and interaction  The studied predictors are often behind APIs or 
graphical interfaces, exposing very little of their inner workings. Because of the 
competition between actors and the perceived security risks the default is to 
disclose as little information as possible to the public and to the auditors. Yet, while 
users might only receive the raw predictions, auditors often have the possibility to 
request confidence estimates or prediction scores. To distinguish different types 
of access to the ML system, I list the different nuggets of information the model 
provider release in Figure 1.3.

In addition to what can be accessed, how it can be accessed determines which 
properties of the predictor can be verified and which cannot. For example, the 
types of analysis the auditor will conduct if they only has access to logged (query, 
prediction) pairs, will be different than if they could query the predictor with any 
input. Thus, how some information can be accessed defines the interaction model 
between the auditor and the model provider. Some examples of interaction models 
are listed in Figure 1.4.

Now, I review a few examples of common (access, interaction) combinations 
studied in the literature and this manuscript. The first one is the black-box audit.
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Interaction Description

I1: Sampling The oracle chooses a random point in 𝑥 ∈ 𝐷 and 

returns it or the prediction ℎ(𝑥) to the caller

I2: Conditional sampling The caller specifies a subset 𝑆 of the dataset 𝐷, the 

oracle chooses a random point 𝑥 ∈ 𝑆 and returns it 

or the prediction ℎ(𝑥)
I3: Query The caller specifies a query 𝑥 and the oracle 

returns the prediction ℎ(𝑥)
I4: Full The caller has access to the entire dataset 𝐷 and to 

the weights of the predictor ℎ

Figure 1.4:  Examples of different interaction models to access a predictor ℎ 

or dataset 𝐷. The interaction is expressed between a caller and an oracle that 
mediate the access to the object.

Definition 1.5 (Black-box audit) An audit is said to be a black-box audit if the 

auditor only has query access (Figure 1.4, I3) to the raw predictions (Figure 1.3, P2) 

of the studied predictor.

To describe relaxations of the black-box audit model, the community has found a 
plethora of, sometimes creative, variations of the black-box. Some of them appear 
in [54]: black-box (Definition 1.5), grey-box (I3 + P3 + M2), white-box (I4 for all 
objects in Figure 1.3), de-facto-white-box (same as white box but with copyright 
protection) or even outside-the-box access (same as grey-box + D2). To avoid 
talking about shades of grey and strange boxes, we will only use the term black-
box as defined in Definition 1.5 and explicitly mention the additional information 
given to the auditor using terms defined in Figure 1.3 and 1.4.

The accessible parts of the ML system and the allowed interaction constrain 
the properties an external auditor will be able to audit. For example, privacy is 
a property obtained from the training procedure: it requires full access to the 
training pipeline (D3+M4) and hypothesis class (M2). On the other hand, measuring 
properties such as robustness, performance or fairness only require query access 
to the final predictor (P2 or P3) but can be much more efficient if the auditor has 
more access to the model weights or training data.

The question “what minimal access” is required for ML auditing is crucial to 
inform public policy and governance schemes [55] to target what information to 
request from model providers. One contribution of this manuscript is to make 
some progress towards answering this question.
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2.4. When? The four steps of Machine Learning audits

A ML audit is not just a matter of writing a Python script to evaluate the predictor 
behind and send the cavalry if the performance is too low. In fact, the computer 
scientist part might be the easiest one. Before even starting the audit, the auditor 
must know what to look for, think about how to measure it and the potential source 
of errors. As I will discuss in the next section, these choices are all potential targets 
that can be manipulated by the model provider to evade the audit. Thus, the goal 
of this section is All in all, ML audits can be divided in four phases: reconnaissance, 
systematization, measurement and monitoring.

During the reconnaissance phase, the auditor monitors, looks for and gathers 
initial evidence about the ML system. A first mechanism consists in collecting 
reports and complaints from users [56] or model providers themselves [57], then 
run continuous tests to detect if groups of the population experience issues more 
often than others. An alternative, implemented by the Organisation for Economic 
Co-operation and Development (OECD) [58] and the Responsible AI Collaborative 
[59] is to monitor news coverage on AI and classify the content using Natural 
Language Processing (NLP) techniques to detect incidents and hazards.

During the systematization phase, the auditor articulates a specific question and 
a corresponding specification (i.e. metrics and audit dataset) to test. To continue 
our example, the auditor might ask “is this specific report an outlier or is there a 
systemic issue?” by testing if the demographic parity of the predictor is below a 
given threshold. If the auditor has access to users, they can record the interactions 
of the users with the predictor as in [60]. When impossible, the auditor has to 
resort to variations of sock-puppet audits [61] or use public datasets to build an 
audit dataset. The design space at this stage is very large, the interested reader can 
refer to [62] for an overview of algorithm audits.

During the measurement phase, the auditor interacts with the model provider to 
gather the predictor outputs and system information required by the verification 
process. For example, the auditor might interact with the API to estimate the 
demographic parity and request additional information to the model provider 
to determine if bias mitigations measures are sufficient. This phase is critical to 
mitigate inconsistencies and blind spots in the data. To to so, it is important to 
gather as much information as possible, via different data sources [63], additional 
model artifacts [64] or through specific protocols that guarantee the integrity of 
the data and model [65].

During the monitoring phase, the auditor continues the interaction with the 
model provider and its users. It is important, both to ensure that the model provider 
took the necessary steps to address the shortcomings surfaced by the audit if any, 
and to check that the predictor or context does not drastically change, which would 
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require a new study. In the fairness example, the auditor would either pressure the 
platform into improving its system and continue measuring demographic parity 
to check that they do. While this has not yet been explored in the context of ML 
audits, tools range from model change detection (has the model changed?) [66, 
67] to distribution shift detection (has the users’ population or behavior changed?) 
[68, 69].

Each of these phases encompass their own challenges. Chapter 3 and Chapter 2 
are concerned with the robustness of the measurement phase to deceptive model 
providers while Chapter 4 introduces a simple and efficient baseline for the moni
toring phase.

2.5. On the user distribution

In this last subsection, I want to take a few lines to reflect on convenient assump
tion of an underlying user distribution and the issues it causes to ML auditing. The 
notion of “a probabilistic distribution determined arbitrarily by nature” [70] from 
which examples are drawn was introduced to the learning community by Valiant 
in 1984. Valiant’s goal was to separate concepts that are computationally learn
able using examples from concepts that would require too much computation to 
learn. The central notion of learnability is generalization: how does the predictor 
perform on examples not seen during training ?

Definition 1.6 (Generalization gap [3]) Let 𝒟︀ be a distribution on input, target 

pairs in 𝒳︀ × 𝒴︀, and 𝑙 : ℋ︀ × 𝒳︀ × 𝒴︀ → ℝ+ a loss function. The generalization gap 

of a predictor ℎ : 𝒳︀ → 𝒴︀ with respect to a dataset 𝐷 ⊂ 𝒳︀ × 𝒴︀ is defined as

Δgen = 𝔼(𝑥,𝑦)∼𝒟︀[𝑙(ℎ, 𝑥, 𝑦)] − 𝐿(ℎ, 𝐷)

When 𝐷 is the training data and 𝒟︀ is the distribution of new data, the general
ization gap describes how representative the training error is of the real error on 

new data points. Assuming that both the training data 𝐷train and 𝐷test come from 

the same distribution 𝒟︀ allows to leverage concentration bounds to upper-bound 

the generalization gap Δgen by a function of the error on the training data and 
thus estimate the performance of the predictor on new data without looking at the 

performance on a test set.

In the context of ML auditing, assuming that individual users can be represented 
as feature vectors drawn independently from a fixed joint probability distribution 
allows to reason about audit validity. Even a day, a month, or a year after the audit 
was conducted, as long as users can still be viewed as sampled from the same 
distribution, concentration bounds can be used to prove that the conclusions of 
the audit continue to hold.
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Unfortunately, neither the auditor or the model provider have explicit description 
of such user distribution. Of course, there exists methods to test if a distribution 
has changed and if it has an impact on the predictor’s performance [71] but in 
practice, these methods are only capable to detect change that were anticipated 
during their inception [68]. Does this mean that companies are bound to spend 
millions of euros every year on the services of audit firms even if they made no 
substantial changes? I do not have a definitive answer. In this manuscript, I assume 
that the users (or their behavior) does not significantly change and focus on the 
(potentially deceptive) changes of the predictor.

3. Audit manipulations
All the above discussion on how to audit ML systems and what access levels 
and interactions are required assumed a cooperative model provider. However, 
building powerful, fair, private and robust systems is hard. It involves complex 
tradeoffs that depend not only on technical constraints but also on the goals and 
policies of the model provider. Thus, when building such a system is too costly or 
when the model provider would rather not expose their true goals and policies, it 
might be easier to cheat.

Definition 1.7 (Audit manipulation) Let ℎ : 𝒳︀ → 𝒴︀ be a deterministic predictor. 

Let ℎauditor (resp. ℎuser) be the view of the predictor ℎ by the auditor (resp. the user).

• If for all 𝑥 ∈ 𝒳︀, ℎauditor(𝑥) = ℎuser(𝑥) = ℎ(𝑥), the audit is not manipulated.

• Otherwise, if there exist 𝑥0 ∈ 𝒳︀ such that ℎauditor(𝑥) ≠ ℎuser(𝑥), then the audit 

is manipulated.

The interactions between the user, auditor and model provider are summarized in 
Figure 1.2. A model provider is successful at evading the audit if the manipulation 
it performed allowed them to pass the audit. That is, even though the predictor 

does not satisfy one of the requirements (i.e. 𝜇𝑖(ℎ, 𝐷test) < 𝑀𝑖), the audit test still 

accepts the predictor (i.e. 𝒯︀(ℎ) = Pass).

3.1. Manipulation incentives

There are a lot of different incentives for platforms to manipulate audits. A first 
incentive to manipulate audits is reputation. If the results of the audits are released 
to the public, displaying strong results can boost the reputation of the model 
provider and conversely, poor results can harm their revenue. Without asserting 
anything about the intention of the mentioned platforms, here are some examples 
of discrepancies observed between the information provided during an audit and 
separate, independent observations.

• One example is the non-disclosed specialization of predictors to a specific 
benchmark. This is what happened when Meta released the Llama 4 [72] 
models on LMArena [73] in 2025. The LMArena is a platform used to rank 

37



3. Audit manipulations

1
Audit set

𝑆
ℎ𝑚(𝑆)

Query 𝑥 ℎ𝑝(𝑥)

2

ℎ𝑝 → ℎ𝑚

Manipulation

Auditor

ℋ︀𝑎

Platform

ℎ𝑝 / ℎ𝑚

Users

𝒟︀

3   Tests:

Is the model fair ?

ℎ𝑚 ∈ ℱ︀  ?
…manipulated ?

ℎ𝑚 ∈ ℋ︀𝑎  ?

Models

ℎ𝑝 : maximize utility

ℎ𝑚 : manipulate audit

Figure 1.5:  The manipulation game. The model provider exposes a model ℎ𝑝 
to the users. To appear fair to the auditor while not deteriorating the utility 

for its users, the model provider manipulates its answers on the audit set 𝑆.

chat-bots from user preferences. Meta was caught [74, 75] (but never con
ceded) using a model optimized to be likable by humans on LMArena while 
releasing a more controlled version to perform better on general knowledge 
and reasoning benchmarks.

• Another example is the case of research APIs where non-trivial discrepancies 
between the auditor’s API and the users’ interface as been observed. In 
particular, this introduces significant risks for studies based on research APIs 
[51]. As an example, researchers reported some videos available on the TikTok 
website were not available in the research API, and the engagement metrics 
were highly underestimated by the research API [76].

A second incentive to manipulate audits appears when different criteria 𝜇𝑖 of the 
specification are (even partially) antagonistic. Beyond revealing business secrets, 
the choice of trade-off has to take roots in the values of the model provider and the 
goal they pursue. As an audit might reveal these trade-offs, model providers can 
be tempted to fake a given trade-off. An often discussed example is the incompat
ibility between fairness metrics and the associated trade-offs with accuracy. The 
notions of independence, separation and sufficiency (Definition 1.4) are mutually 
exclusive, i.e. no pair of conditions can hold at the same time [25]. Moreover, 
when the platform cannot collect more data, they have to resort to fairness repair 
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methods that often lead to tradeoffs with performance [77]. Thus, instead of care
fully choosing a trade-off between the different fairness notions and the accuracy 
of their system, model providers can just optimize the model shown to the auditor 
to satisfy the audit criteria and serve the more accurate (albeit more unfair) model 
to the users.

Finally, a third incentive arises from the fines theoretically associated to the non-
compliance with current regulations mentioned in Subsection 1.2.1.

3.2. Manipulation targets

There are a lot of opportunities in the specification/verification process for a 
deceptive model provider to manipulate the outcome of the audit, and black-box 
audits place the auditor in a delicate position. To be a meaningful governance 
mechanism, the specification and verification process of the audit must be as 
transparent as possible to avoid regulatory uncertainty [78]. This transparency can 
be exploited by a deceptive model provider. Per the definition of the specification 
and verification process, to evade the audit the model provider can manipulate four 

components: the specification data 𝐷test, the metrics 𝜇𝑖 (and associated thresholds 

𝑀𝑖), the predictor ℎ itself and the test 𝒯︀.

Manipulating data  If the auditor relies on the model provider donating or giving 

access to internal data to define the test dataset 𝐷test, the model provider can 
choose to hide some data in its favor. More specifically, consider a specification 

(𝐷, 𝜇, 𝑀) and a predictor 𝑀  that does not meet the specification, i.e. 𝜇(ℎ, 𝐷) <
𝑀 . [79] and [80] proved that it is easy to craft a subset 𝐷̃ such that

• 𝐷̃ is indistinguishable from 𝐷 with respect to a statistical test such as a 
Kolmogorov-Smirnov test (KS test).

• The predictor appears to satisfy the specification, i.e. 𝜇(ℎ, 𝐷̃) > 𝑀 .

Manipulating metrics  If the model provider can influence the metrics that will 
be used to evaluate it’s system, they can pick (intentionally or not) the metrics on 
which their system perform well [81]. This is what happened in the opposition 
between the investigation website ProPublica and Northpointe (now Equivant), 
the creator of the COMPAS recidivism prediction software. ProPublica accused 
COMPAS of discriminating against black people because it exhibited disparities in 
False-Positives between black people and the rest of the population. Northpointe 
refuted the accusation, claiming that their system was fair because it satisfied 
accuracy-parity and True-Positive parity [82].

Manipulating the predictor  During the audit, the model provider can easily 
alter the answers to the auditor’s queries or simply swap the model shown. 
Chapter 2 and Chapter 3 study the impact of such manipulations and how they 
can(‘t) be detected. Some works have also suggested that model providers could 
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Figure 1.6:  From one-time audits to monitoring, and the different kinds of 
information that the auditor has access to.

be asked to provide explanations alongside the predictions to improve the audit 
efficiency [64]. However, this additional information can also be manipulated by 
the model provider and used to escape the audit [83–85].

Manipulating the test  In practice, because the model providers are not always 
forced to open their systems to auditors, then can negotiate the access to their 
internal systems to impose restrictions on the kind of tests that can be run on 
their infrastructure. An example would be to impose a query budget constraint to 
the auditor or force a given interface (such as a research API instead of scraping 
access). Fewer queries or less access to the predictor would mean a higher variance 
of the test, which could be exploited by the model provider to evade the audit.

4. Outline of the manuscript
All in all, designing a fair audit protocol is a balancing act. The specification has 
to meaningfully protect users. The verification should be lightweight for honest 
model providers and is still protect against deceptive ones. It requires the auditor 
to be knowledgeable on the prediction task solved by the model provider, to 
understand the socio-economic context it operates in, and pay attention to the 
design of the audit protocol to avoid blatant manipulations.

During the three years of my PhD, I made three main contributions towards 
answering the question this manuscript asks, with different assumptions about the 
knowledge and access of the auditor (see Figure 1.6). The first one I will present, 
although not the first in chronological order, deals with a proposition to model 
the problem and some ideas to solve it. In this chapter (Chapter 2), I introduce the 
framework of Auditing with a prior. To demonstrate the manipulation-proofness 
guarantees that can be obtained, I introduce a prior based on the labels the auditor 

has access to in their audit dataset 𝐷test. The next chapter (Chapter 3) is an 
exploration of an alternative prior, based on the auditor knowing the hypothesis 
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class used by the model provider. It shows that while knowing the hypothesis 

class allows for a clever process to build the specification dataset 𝐷test, the offered 
manipulation-proofness guarantees vanish as the model grows in complexity. 
Finally, in Chapter 4, I explore monitoring as a solution, complementary to the 
audit prior, to reduce the manipulation risks.

5. Contributions
The content of this manuscript is based on three works I have published in inter
national conferences during my PhD. A preliminary version of [86] was published 
in a local French conference. Finally, I also actively contributed to open-source 
projects related to auditing, machine learning and scientific editing.

5.1. International conferences

• Augustin Godinot, Erwan Le Merrer, Gilles Trédan, Camilla Penzo, and Franois 
Taïani. “Under Manipulations, Are Some AI Models Harder to Audit?.” In “2024 
IEEE Conference on Secure and Trustworthy Machine Learning (SaTML).” 
Special issue, 2024 IEEE Conference on Secure and Trustworthy Machine Learning 

(SaTML), April 2024, 644–64. https://doi.org/10.1109/SaTML59370.2024.00038
‣ Code: https://github.com/grodino/tryphon
‣ Contributions: I am the first author.

• Augustin Godinot, Gilles Tredan, Erwan Merrer, Camilla Penzo, and Francois 
Taiani. “Queries, Representation & Detection: The Next 100 Model Fingerprint
ing Schemes.” Paper presented at The 39th Annual AAAI Conference on 
Artificial Intelligence. December 9, 2024. https://openreview.net/forum?id=rv0
kUJses4
‣ Code: https://github.com/grodino/QuRD
‣ Contributions: I am the first author.

• Garcia Bourrée, Jade, Augustin Godinot, Sayan Biswas, et al. “Robust 
ML Auditing Using Prior Knowledge.” In “Proceedings of the 42nd Inter
national Conference on Machine Learning.” Special issue, Proceedings of 

the 42nd International Conference on Machine Learning, PMLR, October 
6, 2025, 18794–810. https://proceedings.mlr.press/v267/garcia-bourree25a.html 
(ICML25, Spotlight poster, top 2.6%)
‣ Code: https://github.com/grodino/merlin
‣ Contributions: I am the co-first author. I proposed the project to the other 

collaborators, created the code-base and designed the mathematical frame
work. Jade and Sayan helped with the proofs and Milos and Martijn helped 
with the experiments.
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5.2. Local conferences

• Augustin Godinot, Erwan Le Merrer, Gilles Trédan, Camilla Penzo, and François 
Taïani. “Change-Relaxed Active Fairness Auditing.” July 6, 2023, 91. https://hal.
science/hal-04395914
‣ Contributions: I am the first author.

5.3. Open source software

• Timm: A python package to re-use pretrained models easily.
https://github.com/huggingface/pytorch-image-models

• max-stats: A scraping service to collect and audit data from the French MAX
JEUNE railway pass.
https://github.com/grodino/max-stats

• Typst: A document creation language. This manuscript is written in Typst. 
https://typst.app/home
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There is a crack, a crack in everything, that’s how 
the light gets in.

— Leonard Cohen, Anthem

This chapter presents a novel theoretical framework and a practical implementa
tion for preventing manipulations by the model provider when the auditor only 
has query access to the predictor. Our analysis starts from a simple observation: 
auditors can readily collect labeled data reflecting the model provider’s service 
from independent sources, a common practice whose theoretical and empirical 
implications remain unexplored. For example, when studying an online content 
moderation system, the auditor could have some evidence at hand, to confront the 
model under scrutiny, e.g., “A post with this content must pass the moderation 
filter, otherwise there is some bias on a protected feature of the user profile”. Thus, 
by incorporating this dataset, the auditor can independently verify the model 
provider’s responses, cross-referencing them against known ground truth labels. 
Our method enables more reliable detection of fairness violations while reducing 
the reliance on assumptions about the model provider’s behavior. Specifically, we 
aim to answer the following research question:

Can the auditor’s prior knowledge of the ground truth prevent 
manipulations of fairness audits?

This chapter studies fairness audits of ML decision-making systems under manip
ulation by the model-hosting model provider. We consider binary classification 
problems, which is in line with related work in the domain of ML fairness analysis 
[1, 90]. We make the following three contributions:
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Figure 2.1:  The manipulation game. The model provider exposes a model ℎ𝑝 
to the users. To appear fair to the auditor while not deteriorating the utility 

for its users, the model provider manipulates its answers on the audit set 𝑆.

1. We introduce and analyze a new fairness auditing approach for black-box 
interactions where the auditor has access to prior knowledge about the model 
provider and the ML task (see Section 2.3).

2. We theoretically analyze how much unfairness a model provider can conceal 
given the auditor’s prior knowledge. For any auditor priors, our results 
highlight the importance of keeping the auditor’s prior knowledge private 
(see Section 2.3). For the dataset prior we introduce, we establish bounds on 
the concealable unfairness when the auditor prior remains confidential (see 
Section 2.4).

3. By simulating fairness audits on multiple tabular and vision datasets, we 
provide a more nuanced understanding of how our framework should 
be implemented. Our experiments offer insights into setting the detection 
threshold used to identify manipulations (see Section 2.5).

2. Related Work
This chapter sits at the crossroads between three facets of the literature on the 
evaluation of ML algorithms. First, the motivation to even consider the possibility 
of such manipulations is rooted in the notion of fairwashing and the early works 
of U. Aïvodji, H. Arai, O. Fortineau, S. Gambs, S. Hara, and A. Tapp on the 
manipulation of model explanations (Section 2.2). Second, this chapter addresses 
a fundamental question in the external model evaluation literature: even without 
manipulations, what model properties (e.g., accuracy, fairness, robustness) can be 

44



Chapter 2. – In search for a prior

externally verified (Section 2.2)? Finally, our method is a new leaf, on the young 
but growing tree of manipulation-proof external audit protocols (Section 2.2).

Fairwashing and the rationalization of ML ethics  Addressing fairness issues 
often requires compromising model performance for advantaged groups which 
can discourage companies from embracing fair training practices [77, 91]. Com
panies have two incentives to pay attention to the impact of their system on 
society. The first incentive comes from regulatory efforts such as the Algorithmic 
Accountability Act (AAA) [92] (US) and the Digital Markets Act (DMA) [93] (EU) 
that impose fairness, transparency, and accountability constraints on large digital 
model providers. Yet, how to enforce these regulations is still an open problem 
[94]. The second incentive is public image. Since fairness, transparency and 
accountability are laudable goal, audits, investigative journalism and certifications 
[95] should force companies to pay attention to these objectives. However, both 
incentives are external: the model provider just has to appear fair, transparent 
and accountable. Therefore, a rational model provider can simply trade the fake 
appearance of fairness for a small risk to get caught.

Definition 2.1 (Fairwashing [4]) fairwashing occurs when the actions and commu

nication of the model provider promote the false perception that their machine 

learning model respects some ethical values, while failing to uphold those claims in 

practice.

The work of U. Aïvodji, H. Arai, O. Fortineau, S. Gambs, S. Hara, and A. Tapp 
has extensively studied how model explanations can be used for fairwashing [4, 
84, 96]. Independently, the problem of explanation manipulation was studied as a 
form of the bouncer problem in [85].

External evaluation of ML algorithms  Fairness auditing evaluates ML models 
to ensure fairness and accountability, often without access to proprietary model 
internals [97]. This black-box auditing approach relies on querying the model and 
analyzing its outputs against pre-defined fairness metrics [2, 98]. Current attempts 
to enhance fairness audits with tangible guarantees draw inspiration from hypoth
esis testing [55, 99–103], online fairness auditing [104, 105], and formal methods 
for fairness certification [106–109]. Beyond statistical methods, the work of C. 
Yadav, M. Moshkovitz, and K. Chaudhuri explores the role of explanations in the 
auditing process [64]. Recent works also stress the importance of broadening the 
lens of algorithm auditing by incorporating user perspectives and sociotechnical 
factors [110, 111].

Attempts at robust audits  Manipulating fairness audits is very simple. Auditors 
can be fooled by biased sampling when the decision maker is allowed to publish a 
labeled dataset as proof of model fairness [79]. Adversarial attacks on explanation 
methods, such as LIME and SHAP, can be employed to produce misleading interpre
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tations of model behavior [4, 83, 85, 96, 112–114]. model providers can also modify 
the output of their models to create the appearance of fairness without addressing 
underlying biases [1, 63, 90]. However, the challenge of designing audits that 
are robust to advanced manipulation strategies remains open. The idea of using 
auditor prior knowledge that we formalize in this work has been implicitly studied 
in different contexts. Based on active learning techniques work has studied how 
auditors could leverage knowledge about the hypothesis class [1, 90]. In a more 
practical setting, [115] studied using model distillation methods [115] to use prior 
about the ground truth and hypothesis class [115]. Finally, recent improvement 
in the useability of Zero-Knowledge Proofs have sparked interest in applications 
of cryptographic primitives to robust audits. Among them, Confidential-PROFITT 
and FairProof propose to integrate cryptographic techniques in cooperation with 
the model providers, to ensure the faithfulness of model provider responses during 
audits [116–118]. However, implementing cryptographic audit protocols is very 
intrusive for the model provider and technically restrictive, and thus awaits for 
adoption.

3. Enhancing Black-box Auditing with a Prior
Since a malicious model provider can manipulate Demographic Parity with rela
tive ease, the auditor has to find ways to prevent these manipulations (e.g., using a 
different metric) or to detect them. In this section, we explore the latter. To detect 
manipulations, the auditor must use prior knowledge about what constitutes a 

“likely set of answers” on its audit dataset 𝑆. Then, using this prior, they would 

be able to estimate the likelihood that the received set of answers ℎ𝑚(𝑆) has been 
manipulated.

3.1. Modeling the Auditor Prior

Previous work has demonstrated that prior knowledge is both a practical and an 
essential tool for auditing, yet the notion of an auditor prior has not been explicitly 
leveraged in the analysis of fairness audits. We define an auditor prior as follows.

Definition 2.2 (Auditor prior) The auditor prior is a set of models ℋ︀𝑎 ⊂ 𝒴︀𝒳︀ that 

the auditor can reasonably expect to observe given her knowledge of the decision task 

by the model provider.

For example, in [115], the authors study feature importance by training two models 
— one on a public dataset and another via distillation of the audited ML model — 
and comparing the resulting models. In this case, the prior is the set of models that 
are similar to the model trained on the public dataset. Using a more theoretical 
approach, [1] and [90] explored the case of an auditor knowing the hypothesis 

class of the model provider, i.e., ℋ︀𝑎 = ℋ︀. [119] proposed to use an assumption 

about the Boolean Fourier coefficients of models in the hypothesis class ℋ︀ to 
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construct the prior ℋ︀𝑎. Finally, [63] and [96] used side-channel access (e.g., an 

additional API or explanations) to the ML model to define ℋ︀𝑎 and derive guaran
tees on the measured fairness. For example, in the setting of [63], the prior would 
be the set of models whose outputs agree with the previous predictions collected 

via scraping. In Section 2.4, we introduce a labeled dataset 𝐷𝑎 that the auditor 

will leverage to define ℋ︀𝑎. Definition 2.2 captures all of the situations above and 
allows to formulate general results about the problem of robust auditing.

The auditing process  The auditing process consists of three steps which we 

visualize in Figure 2.1. Here, ℎ𝑝 refers to the model that the model provider exposes 

to its users (the bottom part of Figure 2.1) and ℎ𝑚 refers to the model exposed to 

the auditor (top part of Figure 2.1). First, the auditor builds an audit set 𝑆 ⊂ 𝒳︀ and 

sends the queries in 𝑆 to the model provider (step ①). The model provider receives 

𝑆 all at once and computes the answers using its model ℎ𝑝. To appear fair if it is 

not, the model provider projects its labels ℎ𝑝(𝑆) on the set ℱ︀ of fair models. This 

defines a manipulated model ℎ𝑚 and the answers ℎ𝑚(𝑆) the model provider will 

send to the auditor (step ②, see Subsection 2.4.1). The auditor receives ℎ𝑚(𝑆) and 

exploits these samples to evaluate whether the model provider is fair (ℎ𝑚 ∈ ℱ︀) 

and honest (ℎ𝑝 = ℎ𝑚), (step ③, e.g. using Figure 2.2). Since the auditor does not 

have direct access to ℎ𝑝, they compare ℎ𝑚 to their prior ℋ︀𝑎 to decide whether the 
model provider is honest or malicious. Thus, the auditor tests the two following 

properties of ℎ𝑚:

Is the model provider fair? ℎ𝑚 ∈
?

ℱ︀

Is the model provider honest? ℎ𝑚 ∈
?

ℋ︀𝑎

(2.1)

Note  In this section, we expose general results in terms of models ℎ ∈ 𝒴︀𝒳︀. 
Later in Section 2.4, when considering dataset priors, the considered models will 
be restrictions on the audit dataset, i.e. labelings of the audit dataset. For dataset 

priors (i.e., when ℋ︀𝑎 is a ball, see Section 2.4), we draw ℱ︀ and ℋ︀𝑎 in Figure 2.3. 

Given a model ℎ𝑚, the fairness audit is equivalent to checking if ℎ𝑚 belongs to 
the blue shaded area. In the example of Figure 2.3, the model provider would be 

flagged as malicious as ℎ𝑚 belongs to ℱ︀ but not to ℋ︀𝑎.

Online v.s. batch auditing  Note that we assume that the model provider 
receives all audit queries at once and that it is possible to detect all the audit 
queries. In practice, the queries are usually issued online (that is, one-by-one) 
by the auditor, through web-scraping or through an API. Compared to online 
auditing, it is easier for the model provider to manipulate an audit if it knows all 
the audit queries before having to answer. On the other hand, because the auditor 
has to send all their queries at once, they cannot use the answers of the model 
provider to actively guide the generation of the audit questions (e.g., as in [1], 
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[90]). Ultimately, our setting is built as a worst-case analysis of the auditing game 
for the auditor.

Auditing axioms  To avoid trivial audits, we add two modeling assumptions. The 
first assumption ensures that the auditors’ prior is correct so that a honest model 
provider does not appear as lying. The second assumption asserts that an audit is 
necessary, otherwise the auditor could directly conclude from his prior that the 
model provider is unfair. That is to say, the auditor should never flag a honest 
model provider malicious. In particular, the auditor must have a prior that is close 
to the ground truth. Those assumptions are expressed as:

ℎ𝑝 ∈ ℋ︀𝑎 and ℋ︀𝑎 ∩ ℱ︀ ≠ ∅ (2.2)

3.2. On Public Auditor Priors

A typical auditor proceeds in the following way. Upon examining a model 

provider’s model ℎ𝑚, the auditor must first understand the task addressed by ℎ𝑚 
and what constitutes a “good-performing model” on this task. In our moderation 
example, the auditor might try to look for public moderation datasets to test the 

performance of ℎ𝑚 using a few examples. It might also look for publicly-available 
moderation models to compare their resulting input/output pairs with those of 

ℎ𝑚. Unfortunately, our first result is that regardless of the prior the auditor might 
construct, if these models are public (or at least known by the model provider), the 
model provider will always be able to manipulate the audit:

Theorem 2.1 (Public prior) Assume the model provider knows ℋ︀𝑎, it can then 

always pick ℎ𝑚 ∈ {ℋ︀𝑎 ∩ ℱ︀} to appear both fair and honest.

Proof (Theorem 2.1) First, recall that by definition the model provider knows ℱ︀. 

Assume that the dataset prior is public, the model provider also knows ℋ︀𝑎. 

Hence the model provider can compute ℱ︀ ∩ ℋ︀𝑎. As by assumption, ℱ︀ ∩ ℋ︀𝑎 ≠ ∅ 

(Equation (2.2)), the model provider can pick any model ℎ𝑚 ∈ ℱ︀ ∩ ℋ︀𝑎. ∎

In the case of [96], the model provider perfectly knows ℋ︀𝑎 (because the ℋ︀𝑎 is 
coming from queries of its model) so the detector is subject to this manipulation 

(called Irreducibility in the paper). In T. Yan and C. Zhang’s work, ℋ︀𝑎 is the 

hypothesis class ℋ︀ of the model provider, communicated to the auditor before 
the audit. Theorem 2.1 provides a novel view on the impossibility results that we 
will cover in Chapter 3.

4. Using Labeled Datasets for More Robust Audits
In an ideal, yet unrealistic audit scenario, the auditor would have access to non-

manipulated answers from the original model provider model ℎ𝑝. The prior ℋ︀𝑎 
would then be the set of models that agree with these non-manipulated answers 
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and would allow the auditor to detect inconsistencies between the original ℎ𝑝 and 

manipulated ℎ𝑚 models. Yet in general, the auditor does not have access to such 
non-manipulated answers.

As an alternative, we propose to study the use of a private (because of Theorem 2.1) 

dataset 𝐷𝑎, collected by the auditor to construct the auditor prior ℋ︀𝑎. This idea 
(coupled with an assumption on the hypothesis class) has been studied experi
mentally [115] but the more recent theoretical works on robust auditing diverged 
towards studying priors on the model itself rather than on the data [1, 96, 119]. 
In the following, we define what a dataset prior is, and study the guarantees an 
auditor can achieve using this prior.

Because the auditor does not have any assumption of the hypothesis class of ℎ𝑚 

or ℎ𝑝, and only observes ℎ𝑚 through its audit dataset 𝐷𝑎, in this section all 
models are restrictions to the audit dataset. Thus, ℎ𝑝 and ℎ𝑚 are labelings of 

𝐷𝑎, and ℱ︀ is the space of fair labelings on 𝐷𝑎:

ℎ𝑝 : 𝐷𝑎 → 𝒴︀   and  ℎ𝑚 : 𝐷𝑎 → 𝒴︀

ℱ︀ = {ℎ | ℎ ∈ 𝒴︀|𝐷𝑎| and 𝜇(ℎ, 𝐷𝑎) = 0}.
(2.3)

Definition 2.3 (Dataset prior) Let 𝐷𝑎 = (𝐷𝑋
𝑎 , 𝐷𝑌

𝑎 , 𝐷𝐺
𝑎 ) ⊂ 𝒳︀ × 𝒴︀ × 𝒢︀ be a la

beled dataset the auditor has access to. Let 𝑛 = |𝐷𝑎| be the cardinality of 𝐷𝑎 and 

𝜏 > 0 a threshold set by the auditor. The dataset prior ℋ︀𝑎 is defined as the set of 

models restricted to 𝐷𝑋
𝑎  that have a reasonable risk 𝐿 (see Definition 1.1) on 𝐷𝑎:

ℋ︀𝑎 = {ℎ ∈ 𝒴︀|𝐷𝑎| | 𝐿(ℎ, 𝐷𝑎) < 𝜏}

Unless noted otherwise, in this section and in Section 2.5, ℋ︀𝑎 will denote the 
dataset prior. To test if the model provider is honest, the auditor needs to verify 

whether ℎ𝑚 ∈ ℋ︀𝑎, i.e., whether 𝐿(ℎ𝑚, 𝐷𝑎) < 𝜏 . The risk threshold 𝜏  thus plays 
a crucial role in the guarantees the auditor will be able to achieve. The final 
verification test we propose as an audit with a prior is presented in Figure 2.2. 

We discuss the impact of 𝜏  in Subsection 2.4.2 and guidelines to set its value in 
Subsection 2.4.3, but first, we need to discuss the definition of optimal manipula
tion in Subsection 2.4.1.

4.1. Optimal Manipulation

Given the audit set 𝑆 and its model ℎ𝑝, the objective of a manipulative model 

provider is to create a set of answers ℎ𝑚 ∈ 𝒴︀|𝐷𝑎| that appear fair to the auditor 
but also do not raise suspicions. Ideally, the model provider would like to know 

the auditor prior ℋ︀𝑎 (see Theorem 2.1), but in the general case it cannot because 
it is not public information. As a consequence, the model provider cannot directly 
optimize its answers to be expectable and fair. However, the model provider still 
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Input audit dataset 𝐷𝑎, query access to predictor ℎ,

           threshold 𝜏 , tolerance 𝜀
1 Define 𝐷𝑡

𝑎 = {(𝑥, 𝑦) : (𝑥, 𝑦, 𝑔) ∈ 𝐷𝑎 and 𝑔 = 𝑡}
2 Collect ℎ̂ = {ℎ(𝑥) : (𝑥, 𝑦, 𝑔) ∈ 𝐷𝑎}
3 𝐿̂ ← 1

|𝐷𝑎| ∑(𝑥,𝑦)∈𝐷𝑎
𝑙(ℎ, 𝑥, 𝑦)

4 𝜇̂ ← 1
|𝐷1

𝑎| ∑(𝑥,𝑦)∈𝐷1
𝑎
𝟙{ℎ(𝑥) = 1} − 1

|𝐷0
𝑎| ∑(𝑥,𝑦)∈𝐷0

𝑎
𝟙{ℎ(𝑥) = 1}

5 If 𝐿̂ < 𝜏  and 𝜇̂ < 𝜀 Return Pass

6 Else Return Fail

Figure 2.2:  Audit with a prior for demographic parity.

has cards up its sleeve; it already trained a model ℎ𝑝 on a dataset 𝐷 that is close 

to that of the auditor 𝐷𝑎.

Thus, instead of searching ℎ𝑚 in ℋ︀𝑎 ∩ ℱ︀, the model provider can assume that 

its true model ℎ𝑝 is expectable – that is, ℎ𝑝 ∈ ℋ︀𝑎 – and try to find a fair model 

ℎ𝑚 ∈ ℱ︀ while flipping as few labels as possible from ℎ𝑝. Therefore, the optimal 

manipulation is the projection of ℎ𝑝 on ℱ︀:

ℎ𝑚 = projℱ︀(ℎ𝑝) = arg minℎ∈ℱ︀ 𝑑(ℎ, ℎ𝑝). (2.4)

The distance 𝑑 in equation Equation (2.4) is the empirical risk 𝐿 of ℎ using the 

labels of ℎ𝑝 as the ground truth.

𝑑(ℎ, ℎ𝑝) = 1
|𝐷𝑎|

∑
(𝑥,𝑦)∈𝐷𝑎

𝑙(ℎ, 𝑥, ℎ𝑝(𝑦)) (2.5)

4.2. Achievable Guarantees

By construction, when there are no manipulations (i.e. ℎ𝑝 = ℎ𝑚), if the predictor 

is fair (i.e. 𝜇(ℎ, 𝐷test) < 𝜀), then ℙ(𝒯︀prior(ℎ𝑚) = Pass) = 1 and conversely if 

the predictor is unfair (𝜇(ℎ, 𝐷test) ≥ 𝜀) , then ℙ(𝒯︀prior(ℎ𝑚) = Fail) = 1. Now, 

assume that the audited predictor is manipulated, i.e. ℎ𝑝 ≠ ℎ𝑚. We argue that the 
model provider has no incentive to manipulate the audit if their original predictor 

was fair. Thus, if ℎ𝑝 ∈ ℱ︀, then ℎ𝑝 = ℎ𝑚 and ℎ𝑝 ∈ ℋ︀𝑎 ⇒ ℎ𝑚 ∈ ℋ︀𝑎. This means 

that our test 𝒯︀prior test has no false positives, and the main quantity of interest to 
the auditor is the manipulation detection rate.

Definition 2.4 (Manipulation detection rate) The probability 𝑃𝑑, over the random

ness of the provider’s manipulation strategy, that the auditor correctly detects a 

manipulative model provider with optimal manipulation is

𝑃𝑑 = 𝑃(ℎ𝑚 ∉ ℋ︀𝑎 | ℎ𝑝 ∈ ℋ︀𝑎).
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Figure 2.3: Representation of the auditor prior ℋ︀𝑎, the honest model provider 

model ℎ𝑝 and a corresponding malicious model ℎ𝑚 on the fair ℱ︀ plane. The 
red area represents the area where model providers optimal manipulations 

are detected as dishonest: they fall outside of the blue region of ℱ︀

Estimating or computing 𝑃𝑑 requires the knowledge of the distribution of labelings 

in ℋ︀𝑎. Unfortunately, unless they have access to the training pipeline of the model 
provider, this model distribution is inaccessible to the auditor. To overcome this 
issue, we make the assumption of an uninformative prior: since the auditor does 

not know the model distribution in ℋ︀𝑎, they must assume it is uniform.

Theorem 2.2 (Prior-Uniform detection rate) Under the dataset prior of definition 

Definition 2.3 with 𝑙(ℎ, 𝑥, 𝑦) = ℓ2(ℎ(𝑥) − 𝑦) the ℓ2 norm, and the uninformative 
prior assumption, the probability that the auditor correctly detects a malicious model 

provider trying to be fair is

𝑃𝑑 = 1 − 1
𝑊𝑛 (


∫

arccos(𝛿
𝜏)

0
sin𝑛(𝜃)𝑑𝜃 − 𝛿

𝜏
(1 − 𝛿2

𝜏2 )

𝑛−1
2

)

.

with 𝐷𝑌
𝑎  the labels of the samples in 𝐷𝑎, 𝛿 = 𝑑(𝐷𝑌

𝑎 , ℱ︀), the distance of 𝐷𝑌
𝑎  to ℱ︀ 

and 𝑊𝑛 the 𝑛-term of Wallis’ integrals.

To gain intuition about the proof, we represent the audit case for |𝑆| = 3 in 

Figure 2.3. By definition of the dataset prior, ℋ︀𝑎 is a ball of radius 𝜏 , centered 

on 𝐷𝑌
𝑎 , the labels given in the audit dataset 𝐷𝑎. The manipulation of a model ℎ𝑝 

can be detected only if the resulting model is outside of ℋ︀𝑎, as shown in orange 

on Figure 2.3. The probability of detection is thus 1 minus the volume of original 

models ℎ𝑝 whose projection on ℱ︀ lies outside of ℋ︀𝑎. This volume is highlighted 
in red in Figure 2.3. The detailed proof of Theorem 2.2 is deferred to Appendix A.

Theorem 2.2 highlights two key parameters to the auditor’s success: the unfairness 

of the prior 𝛿 = 𝑑(𝐷,
𝑎ℱ︀) and the expectability threshold 𝜏 . There are three cases 

of interest: if the audit dataset 𝐷𝑎 is perfectly fair 𝛿 = 0, if the distance of the 
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audit dataset to the set of fair predictions is equal to the threshold 𝛿 = 𝜏  and what 
happens in between.

As exposed in Corollary 2.1, if the dataset prior is perfectly fair (i.e., 𝛿 = 0), then 
the auditor has no chance to detect a manipulated model as non-expectable, i.e. 

𝑃𝑑 = 0.

Corollary 2.1 (Balanced dataset 𝐷𝑎) If ℋ︀𝑎 is a ball centered in the ground-truth 

𝐷𝑌
𝑎  that is fair, then the auditor has a probability zero to correctly detect a malicious 

model provider trying to be fair. ℋ︀𝑎 = 𝐵(𝐷,
𝑎𝜏) ∧ 𝐷∈

𝑎 𝜕ℱ︀ implies 𝑃𝑑 = 0.

Proof (Corollary 2.1) If 𝐷∈
𝑎 𝜕ℱ︀ then 𝛿 = 0 and arccos( 𝛿

𝜏 ) = arccos(0) = 𝜋
2  in the 

formula of Theorem 2.2. Thus, 𝑃𝑑 = 1 − 1
𝑊𝑛

(𝑊𝑛 − 0) = 0. ∎

On the other hand, if 𝜏 = 𝛿2, that is the ℋ︀𝑎 ball is tangent to the set of fair 

predictions ℱ︀ then 𝑃𝑑 = 1 and any attempt at gaming the audit will be detected.

Corollary 2.2 (Tangent prior) If the prior ℋ︀𝑎 is tangent to the hyperplane of fair 

predictions ℱ︀, then the auditor has a probability one to correctly detect a malicious 

model provider trying to be fair. That is,

𝜏 = 𝛿 ⇒ 𝑃𝑑 = 1.

Proof (Corollary  2.2) If ℋ︀𝑎 is tangent to ℱ︀ then 𝛿 = 𝜏 . Thus, arccos( 𝛿
𝜏 ) =

arccos(1) = 0 and ∫arccos(𝛿
𝜏)

0
sin𝑛(𝜃) 𝑑𝜃 = 0.

Following Theorem 2.2 with 𝛿
𝜏 = 1, 𝑃𝑑 = 1 − 1

𝑊𝑛
(0 − 0) = 1. ∎

Finally, in the case 0 < 𝛿 < 𝜏 , we derive a lower bound on the probability 𝑃𝑑 to 

detect manipulations in Corollary 2.3. The ratio 𝛿
𝜏  that maximizes the detection 

rate lower bound decreases (and tends to 0) as the budget increases. Thus, while 

the audit dataset 𝐷𝑎 should not be perfectly balanced (i.e. 𝛿 = 0), as the audit 

budget increases it should be close to perfect parity (𝛿 ≳ 0).

Corollary 2.3 (Detection rate lower bound) If 𝑛 is even, the probability of detecting 

manipulations is lower bounded by

1
𝑊𝑛

𝛿
𝜏
(1 − 𝛿2

𝜏2 )

𝑛−1
2

≤ 𝑃𝑑 ≤ 1.

Moreover, the lower bound is maximized when 𝛿
𝜏 =

√
𝑛+3−

√
𝑛−1

2 .

The proof of Corollary 2.3 is deferred to Appendix B.

2. Per our first axiom in Equation (2.2), we have that 𝛿 ≤ 𝜏 .
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4.3. Practical Considerations and Discussion

In practice, 𝜏  is determined by the task difficulty, and the amount of data available 

to solve the task. One possibility to tune the value of 𝜏  is to use the error rate of 
current state-of-the-art models that solve the task at hand as a minimum value. We 
empirically explore this option in Subsection 2.5.4. If the auditor has the resources, 
an alternative would be to train a set of models on the task and use them to 

calibrate 𝜏 . We leave further exploration of the calibration of 𝜏  to future work.

On the other hand, the value of 𝛿 is determined by the audit set sampling 
procedure. In most cases, the audit set is sampled i.i.d. from a pre-specified audit 

distribution. In this case, the value of 𝛿 is fully determined by the resulting sample 

𝑆. To regain some control over 𝛿, the auditor has to allow other audit set sampling 
strategies, at the expense of potential statistical bias in the fairness and accuracy 
estimations.

5. Empirical Evaluation
We now empirically quantify the extent to which the model provider can manip
ulate the unfairness of its ML model. To that end, we study the concealable 

unfairness: the maximum level of unfairness a model provider can hope to hide 
before being detected as malicious. First, we evaluate the effectiveness of differ
ent manipulation strategies and determine the optimal one. Since any practical 
fairness repair method can be used as a manipulation methods, we explore in 
Subsection 2.5.3 (RQ1) What is the best manipulation strategy implementation? 
Then, we study in Subsection 2.5.4 the dynamics of the concealable unfairness 

when the audit budget |𝑆| increases: (RQ2) Can the auditor always find an audit 
budget that prevents the model provider from hiding any unfairness, i.e., that 
always allows to flag the model provider if malicious?

5.1. Experimental Setup

We conduct our experiments on tabular and vision modalities. The tabular dataset 
comes from the ACSEmployment task for the state of Minnesota in 2018, which is 
derived from US Census data and provided in folktables [120]. The objective of this 
task is to predict whether an individual between the age of 16 and 90 is employed 

or not. As input features of the model ℎ𝑝, we consider several attributes of the 
individual, including gender, race, and age. The fairness of the models is evaluated 
along the race attribute given in the dataset: one group consists of individuals 
identified as “white alone”, while the other includes all remaining individuals.

For the vision modality, we study CelebA [121], which consists of images of 
celebrities along with several binary attributes associated with each image, such 
as whether the person in the photo is blond, smiling, or if the photo is blurry. 
As input to a vision model, we use the image to predict one of the associated 
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attributes. The target attribute varies across experiments and will be specified 
accordingly. Demographic Parity is evaluated along the gender attribute given in 
the dataset. For the ACSEmployment dataset, we train Gradient Boosted Decision 
Tree (GBDT) and Logistic Regression (Log. Reg.) models, while for CelebA, we 
train a LeNet convolutional neural network [122]. GBDT and Log. Reg. are trained 
using the default parameters of their respective implementations in Scikit-Learn. 
Meanwhile, LeNet is trained irrespective of the target attribute using the Adam 

optimizer with a learning rate of 𝛾 = 0.001, a batch size of 32, and for two epochs, 
which is sufficient for the model to converge on all features. The code to run the 
experiments is available online.3

5.2. Implementing Optimal Audit Manipulations

In practice, computing the optimal manipulation ℎ𝑚 = projℱ︀(ℎ𝑝) amounts to 
solving

ℎ𝑚(𝑆) ∈ arg min 𝐿(ℎ, 𝐷ℎ𝑝
)

s.t. 𝜇̂(ℎ, 𝑆) < 𝜏
(2.6)

with 𝐷ℎ𝑝
= {(𝑥, ℎ𝑝(𝑥)) : 𝑥 ∈ 𝑆}. We note that this problem is the same problem 

solved by in-processing and post-processing fairness repair methods [123]. Thus, 
ironically, computing the optimal manipulation is equivalent to choosing the 
optimal fairness repair method. The only difference being on which set the fairness 

constraints and accuracy objectives are defined: the audit set 𝑆 instead of the 
training dataset. Thus, since any practical fairness repair method can be repur
posed for manipulation, we adapted four classical fairness repair methods: ROC 
Mitigation (ROC) [124], Optimal Label Transport (OT-L) [125], Linear Relaxation 
(LinR) [126] and Threshold Manipulation (ThreshOpt) [127].

5.3. Quantifying the Concealable Unfairness For Different Detection 
Scores

We next quantify the amount of fairness that a model provider can hide for the 

different manipulation strategies above. This concealable unfairness Δ𝜇(ℎ𝑝, ℎ𝑚) 
is defined as the DP gap between the manipulated and honest models.

Δ𝜇(ℎ𝑝, ℎ𝑚) = |𝜇̂(ℎ𝑚, 𝑆) − 𝜇̂(ℎ𝑝, 𝑆)| (2.7)

To decide whether the model observed during the audit is manipulated, the auditor 

has to decide whether ℎ𝑚 ∈ ℋ︀𝑎 or not. To do so, the auditor estimates 𝐿(ℎ𝑚, 𝐷𝑎) 
by computing the detection score Detect(ℎ𝑚, 𝑆).

3. See https://github.com/grodino/merlin.
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Figure 2.4: The concealable unfairness by the model provider for different 
detection scores and manipulation strategies. We highlight this for two 
features of the CelebA dataset (left) and for two different ML models trained 
on the ACSEmployment dataset (right). The horizontal red line indicates the 
Demographic Parity of the most unfair model without manipulation.

Detect(ℎ𝑚, 𝑆) = ∑
(𝑥,𝑦)∈𝑆

𝟙(ℎ𝑚(𝑥) ≠ 𝑦) (2.8)

To build (ℎ𝑝, ℎ𝑚) model pairs, we consider manipulation methods among ROC 
[124], OT-L [125], LinR [126] and ThreshOpt [127], varying hyperparameter values 
when applicable. In Figure 2.4, we plot the value of the concealable unfairness 

Δ𝜇(ℎ𝑝, ℎ𝑚) against the detection score Detect(ℎ𝑚, 𝑆) computed by the auditor. 
We show the results of LeNet models trained on two CelebA targets (first and 
second subplots), and GBDT and Log. Reg. models trained on ACSEmployment 
(third and fourth subplots). The horizontal red lines indicates the DP of the most 
unfair model without manipulation.

First, we observe that for all the datasets, the model provider can conceal signif
icant amounts of unfairness: from 10 to 20 points differences between the two 
protected groups. Comparing the concealable unfairness values with the DP of the 
most unfair honest model (red horizontal line), we observe that the manipulation 
strategies almost all able to totally conceal the original model unfairness. Then, 

focusing on the x axis, the difference in Detect(ℎ𝑚, 𝑆) between the different 
honest models highlights the impact the performance of the model provider’s 

model should have on the detection threshold 𝜏 . In fact, depending on the dataset 

and on the model, Detect(ℎ𝑝, 𝑆) varies from ∼ 0.1 to ∼ 0.2. In Subsection 2.5.4, 
we explore a solution to setup the threshold.
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Figure 2.5: The concealable unfairness for different audit budgets (i.e., data 
samples from the labeled dataset). We highlight this for two features of the 
CelebA dataset (left) and for two different ML models trained on the ACSEm
ployment dataset (right).

5.4. Dynamics of the Concealable Unfairness as The Audit Budget 
Increases

The probability of detecting manipulations (via the the detection score) should 
intuitively increase as the auditor gains access to a larger number of data samples 
(i.e., has a higher audit budget) since this allows for a more accurate comparison of 

ℎ𝑚 with the data prior ℋ︀𝑎. In this experiment, we explore how well this intuition 
holds in practice. For this purpose, we fix the hyperparameters for each manipu
lation method by selecting those that result in the highest concealable unfairness 
for a given base model, as discussed in Subsection 2.5.3. Then, for each base 
model–target attribute pair, we determine the maximum concealable unfairness 
that a model provider can achieve while ensuring that its detection score (see eq. 
Equation (2.8)) remains below the detection threshold. As proposed in Section 2.4 

the threshold for each model is set to 1 − 𝑥, where 𝑥 represents the maximum 
accuracy achieved when training a set of models on the corresponding target. This 

process is repeated for audit budgets ranging from 100 to 5, 000.

The results of this experiment are shown in Figure  2.5. The two plots on the 
left display the results for CelebA using the same base model but different target 
attributes, while the two plots on the right show results for ACSEmployment 
using the same target attribute but different base models. These results reveal two 
distinct cases. In the first case (CelebA Smiling in Figure  2.5), the concealable 
unfairness converges to zero as the audit budget increases. In the second case (all 
the other facets of Figure 2.5), the concealable unfairness remains nonzero despite 
an increasing budget. We hypothesize that this separation arises from the low 
aleatoric uncertainty associated to the Smiling target compared to that of High 
Cheekbones and ACSEmployment. Detecting a smile on a picture is a well defined 
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task. On the other hand, determining if a person has “high cheekbones” is less 
well defined (the notion of “high” can vary from annotator to annotator), leading 
to more label noise. Similarly, guessing the income of a person simply from a few 
demographic attributes is also more subject to label noise as similar people (even 
with similar job positions) can have very different salaries. All in all, because the 
accuracy range of models trained on Smiling is narrower, the detection threshold 

𝜏  can be tighter, which makes the manipulations harder to implement.

As a consequence, while our dataset prior prevents manipulations for tasks with 
low aleatoric uncertainty, model providers can still game audits if they can hide 
in the label noise. This answers (RQ2). In response to (RQ1), we observe from 
Figure 2.4 and 2.5 that the Linear Relaxation and ROC Mitigation manipulation 
strategies are the most effective for a manipulative model provider.

6. Conclusion and Discussion
We investigated, both theoretically and experimentally, the conditions under 
which an audit can or cannot be manipulated when auditing with a prior. We 
introduced an empirical method for tuning the manipulation detection threshold 
to maximize the auditor’s probability of detecting malicious model providers.

While our work offers regulators a framework for defending against audit manip
ulations, the path to accountability extends much further. A significant gap 
remains between audit evaluations and the actual mitigation of identified issues 
[128], [129]. Moreover, one-time audits are inherently limited, as model providers 
can alter their models in harmful ways after the audit has concluded. Addressing 
these challenges in future work will require the development of continuous or 
adaptive auditing mechanisms, potentially incorporating auditor priors, to ensure 
sustained accountability and fairness.
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The laws of mathematics are very commendable, but 
the only law that applies in Australia is the law of 
Australia.

— Malcom Turnbull, Prime Minister

The previous chapter introduced the audit-with-a-prior framework and studied 
the case when the prior is defined by a labeled dataset (Definition 2.3). Among the 
previous attempts at formalizing robust auditing [1, 64, 104], Yan et al. [1] have 
shown that the knowledge of the hypothesis class used by the model provider can 
potentially reduce the required number of audit queries to reach a given robustness 
level. Their method is based on disagreement-based active learning [130] which 
requires training surrogates of the model provider’s model. However, they only 
demonstrated their proposed audit algorithm with linear models on small datasets 
(StudentPerf [131] and COMPAS [132]). Furthermore, they prove that quantifying 
the potential improvement (in terms of query complexity) of their algorithm 
over a simple random baseline is computationally intractable. In this chapter, we 
investigate whether the model provider can engineer models that simultaneously 
achieve a high utility and evade the audit and ask

Can the auditor’s prior knowledge of the hypothesis class prevent 
manipulations of fairness audits?

To that end, we compare the manipulation-proofness guarantees of a simple uni
form random audit algorithm (Algorithm 1) against the best guarantees a regulator 
could hope for. Our contributions are three-fold.

1. We first consider those hypothesis classes that can perfectly reproduce any 
labeling of the dataset. This covers two practical cases: either the model 
provider has a model with a very high capacity, or the auditor’s prior on the 
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model provider’s model is uninformative. We prove in Theorem 3.1 (Subsec
tion 3.4.1) that no audit method —whether active or passive—can deliver a 
better performance than random sampling. We also prove in Corollary 3.1 
that this impossibility holds even if the hypothesis class can only imperfectly 
reproduce any labeling of the dataset with a bounded error rate.

2. To uncover what properties of the hypothesis class influence its auditability, 
in Subsection Subsection 3.4.2 we analyze the simple class of dictionary 
models, whose manipulation guarantees can be analytically derived. We 
identify regimes in which the hypothesis class cannot be audited more effi
ciently than by random sampling.

3. To build a practical understanding of our theoretical results, we formally 
define the notion of manipulability under random audits and capacity in 
Subsection 3.5.1. We then evaluate the manipulability under random audits 
of classical ML models for tabular data. We empirically confirm the strong 
connection between the classical Rademacher complexity and the manipula
bility of manipulation-proof auditing. Since modern ML hypothesis classes 
tend to exhibit larger and larger capacities, we argue that our work brings 
up the limits of the current formulation of manipulation-proof auditing.

2. Related work
The problem of manipulation-proof auditing and more generally black-box, 
remote, and robust property verification of ML platforms arises from the need 
to enforce regulations. As an example, consider the European Union. Classical 
fairness regulation of online ML models mainly comes from the Racial Equality 

Directive [133], the Framework Equality Directive [134] and the Gender Equality 

Directives [135, 136]. Recently, the EU set out to create regulations specific to online 
platforms. These are the AI Act [137], the Digital Services Act [51] and the Digital 

Markets Act [52]. These directives provide a legal framework that prescribes what 
online platforms may and may not do, but offer little to verify that these rules 
are respected in practice. The manipulation-proof framework is a first attempt to 
provide operational solutions that can detect when platforms do not follow the 
law.

In addition, our results are mostly related to the following lines of work.

Algorithm auditing  The field of algorithm auditing is interested in under
standing the impact of algorithms on the lives or the people impacted by those 
algorithms’ decisions. In practice, auditing algorithms in vivo (that is as they are 
deployed in online services) is challenging because they constantly evolve, mostly 
without records [138]. For a survey on examples of published academic audits of 
decision systems, refer to [139]. Moreover, because it is impossible for researchers 
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or regulators to audit each automated decision system, it has been observed that 
most of the recent discoveries of problematic algorithm behavior have surfaced 
thanks to users of those systems [111, 140]. Again, after a problematic algorithm 
behavior has been detected and after a court decision has been made, we still need 
to be able to monitor that this decision is respected.

Audit metrics and audit design  With the advent of broadly publicized algo
rithm audits such as COMPAS [132] or Reuters’ study on Amazon’s recruiting 
tool [141], there has been an effort to devise metrics and their interpretations 
to better understand the impact of algorithms on their users. Most of the effort 
has been directed towards the operationalization of fairness values into the ML 
framework [25]. Classical fairness measures include Demographic Parity [142], 
Equalized Odds [127], Equal Opportunity [127] or Predictive Parity [143]. All of 
these measures encompass different visions of fairness and choosing one versus 
the other has political implications on the considered notion of fairness [144, 
145]. While still marginal, some works are interested in other aspects of the audit 
of AI algorithms. For example, [146] is interested in the verification that online 
platforms comply with the Data Minimization Principle. Another interesting work 
[147] considers the problem of automatically auditing the privacy guarantees of
fered by AI algorithms. However, most of the presented works do not yet consider 
the possibility of the model provider gaming their audit.

Robust verification  The literature on robust auditing is still in its infancy. The 
manipulation-proof [1] framework has only recently been introduced. However, 
with its goal of efficiently choosing the next audit query based on previous queries 
and the associated outputs of the API, the manipulation-proof framework exhibits 
clear links with the active learning literature [148, 149]. With the aim of finding 
methods to ease the audit, [64] showed that the explanation provided by the model 
provider can greatly improve the robustness of audits. For example, they show 
that for linear classifiers, a single result along its counterfactual explanation allows 
to totally characterize the model. Our work does not assume that the auditor has 
access to explanations. It is likely that faithful explanation could lead to audit 
algorithms with increased MP guarantees. On another line of works, [117] and 
[150] suggest instantiating an audit protocol in which both the model provider 
and the auditor would be active, drawing inspiration from zero-knowledge proofs 
and interactive verification protocols.

Benign overfitting and model capacity  As we proved in this work, manipu
lability under random audits has deep connections with model capacity and their 
ability to perfectly fit arbitrary datasets. Classical metrics that capture the notion 
of model capacity include the VC-dimension [151] or the Rademacher Complexity 
(which we used for its usability in practice) [152]. Moreover, our experiments 
on the link between auditability and model capacity have been motivated by the 
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recent finding that larger models can fit the training dataset perfectly while still 
showing good generalization properties [153]. This effect has been observed for 
linear models [154], Support Vector Machines [155] and Decision Trees [156]. In 
the manipulation-proof audit setting, we show that this type of behavior is very 
problematic. In fact, if a model is able to fit any audit set and yet keep its general
ization performance, platforms do not even have to lie to the auditor. They just 
have to train their model to give the answers the auditor expects on their audit set. 
Then, the model provider can define any objective for the rest of the input space, 
even if it does not align with the auditor’s metric.

Interestingly, the connection between model capacity and audit query complexity 
is not limited to manipulation-proof estimation of parity measures. In their work 
on certified feature sensitivity auditing [64], Yadav et al. provide an algorithm to 
audit feature sensitivity for decision trees whose query complexity grows linearly 
with the capacity (number of nodes) of the tree.

3. Auditing and manipulation-proof estimation
During a typical audit, the auditor defines a measure of interest 𝜇 with an 

associated threshold 𝜏𝜇. Classical measures used by auditors are statistical 
parity indicators [25] focusing on independence (e.g. demographic parity, group 
fairness), separation (e.g. balance for positive/negative class, equalized odds) and 
sufficiency (e.g. calibration, predictive parity). Given that demographic parity does 
not require any ground truth labels and since it is often used as the archetypal 

example in the literature, we use it as the measure 𝜇 throughout this paper. While 
the results we present refer specifically to demographic parity, it is straightforward 
to extend them to any parity measure of the form

𝜇(ℎ, 𝑆) = ℙ(ℎ(𝑋) = 1 | 𝑋 ∈ 𝑆, 𝐸)

−ℙ(ℎ(𝑋) = 1 | 𝑋 ∈ 𝑆, 𝐸)
(3.1)

with 𝐸 an event defined with respect to the random variables 𝑋, 𝑋𝐴 and 𝑌 , 

where 𝑋 represents the input, 𝑌  the ground truth label, and 𝑋𝐴 ∈ {0, 1} is the 
sensitive attribute of interest for the auditor. For example, for demographic parity, 

𝐸 = (𝑋𝐴 = 1). We would like to stress that for other less common measures that 
can nonetheless present an interest for auditors (e.g. level of privacy [147] or the 
degree of compliance with data minimization [146]), MP remains an open problem.

3.1. Threat model

We describe the interaction between the auditor and the model provider in the 
threat model diagram (Figure 3.1). Before the audit, the model provider discloses 

the hypothesis space ℋ︀ they use (decision trees for example) to the auditor. Then, 

during the auditing phase, the auditor interacts with the (unknown) model ℎ ∈
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Figure  3.1:  Security game of the manipulation-proof auditing framework. 

Before the audit, the model provider declares the hypothesis space ℋ︀ to the 

auditor. During the audit, the model provider serves the model ℎ ∈ ℋ︀ and 

the auditor queries ℎ on 𝑆. After the audit, the model provider can change its 

model to ℎ′ with the constraint that ∀𝑥 ∈ 𝑆, ℎ′(𝑥) = ℎ(𝑥) or equivalently, 

ℎ′ ∈ ℋ︀(ℎ, 𝑆).

ℋ︀ exposed by the model provider to iteratively build an audit set 𝑆 ⊂ 𝒳︀. The 
manipulation-proof framework acknowledges the possibility for a model provider 

to try to evade the audit by showing a fair model ℎ to the auditor, then switching to 

a more accurate but potentially unfair model ℎ′. The only assumption on how the 

model provider may choose the new model ℎ′ is that it should be consistent with ℎ. 

The consistency constraint requires ℎ′ to have the same outputs as ℎ on the audit 

set 𝑆, otherwise the auditor could easily check that the model provider changed 

its model after the audit by re-querying it on 𝑆. We now formalize the capabilities 
and knowledge of the model provider and the auditor in the MP framework.

• Auditor capabilities: The auditor can send adaptive queries to the model 

provider to build an audit set 𝑆 ⊂ 𝒳︀.
• Auditor knowledge: The auditor knows the hypothesis class ℋ︀ implemented 

by the model provider and the value of the sensitive attribute 𝑥𝐴 of all the 

points in the input space 𝒳︀. However, the auditor does not know the specific 

hypothesis ℎ ∈ ℋ︀ implemented by the model provider.
• Platform capabilities: The model provider can change its model from ℎ ∈ ℋ︀ 

to ℎ′ ∈ ℋ︀ after the audit as long as ℎ′ respects the consistency constraint 

∀𝑥 ∈ 𝑆, ℎ(𝑥) = ℎ′(𝑥).
• Platform knowledge: The model provider knows the property 𝜇 (e.g. Demo

graphic Parity) being measured by the auditor. As the auditor, it knows the 

value of the sensitive attribute 𝑥𝐴 of all the points in the input space 𝒳︀.
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3.2. Machine Learning notations

Except when noted, we will consider a binary classification task as in [149], 

with finite input space 𝒳︀ and output space 𝒴︀ = {0, 1}.4 𝒴︀𝒳︀ denotes the space of 

functions 𝒳︀ → 𝒴︀. For any sample 𝑥 ∈ 𝒳︀, we refer to its sensitive attribute (e.g., 

gender, ethnicity, religion) as 𝑥𝐴 ∈ {0, 1}. The sensitive attribute of the points in 

𝒳︀ induces a partition of the input space. We note 𝒳︀𝐴 = {𝑥 ∈ 𝒳︀ : 𝑥𝐴 = 1} and 

remark that 𝒳︀𝐴 = 𝒳︀𝐴. For any set 𝑉 , 𝒫︀(𝑉 ) denotes the set of all subsets of 𝑉  

and 𝒰︀(𝑉 ) denotes the uniform distribution on 𝑉 . By training the classification 

model, the model provider effectively chooses a model ℎ in some hypothesis class 

ℋ︀. The auditor defines a measure 𝜇 : ℋ︀ × 𝒫︀(𝒳︀) → ℝ+, which is known by the 

model provider. For any subset 𝑉 ⊂ ℋ︀ and 𝑆 ⊂ 𝒳︀, we define the diameter of 𝑉  

with respect to the measure 𝜇 as

diam𝜇(⋅,𝑆)𝑉 = max
ℎ,ℎ′∈𝑉

|𝜇(ℎ, 𝑆) − 𝜇(ℎ′, 𝑆)|, (3.2)

when 𝑆 is the entire input space 𝒳︀, we abuse the notation and write 

diam𝜇(⋅,𝑆)𝑉 = diam𝜇𝑉 . Finally, define for any subset 𝑉 ⊂ ℋ︀, sample 𝑥 ∈ 𝒳︀ 

and label 𝑦 ∈ {0, 1} the set 𝑉 [𝑥, 𝑦] = {ℎ ∈ 𝑉 : ℎ(𝑥) = 𝑦}. The cost Cost(𝑉 ) of 

a subset 𝑉 ⊂ ℋ︀ is defined in Equation (3.3). Note that when the context is clear, 

we elide the 𝜀 for simplicity.

Cost𝜀(𝑉 ) = {
0  if diam𝜇𝑉 < 𝜀
1 + min𝑥∈𝒳︀ max𝑦∈{0,1} Cost𝜀(𝑉 [𝑥, 𝑦])  else (3.3)

Before we formally define the capacity of a hypothesis class in Subsection 3.5.2, we 

will use the term capacity loosely. Intuitively the capacity of a hypothesis class ℋ︀ 

is related to the ability for any labeling of the input space 𝒳︀ to find a hypothesis 

ℎ ∈ ℋ︀ that realizes this labeling. More details on the notion of capacity can be 
found in Section 3.2.

3.3. What is an active auditing algorithm?

An audit algorithm 𝒜︀ with label budget 𝑠 is a sequence of (pos

sibly randomized) 𝑠 + 1 functions (𝑓0, …, 𝑓𝑠). For each iteration 𝑖, 
the function 𝑓𝑖 : (𝒳︀ × {0, 1})𝑖+1 → 𝒳︀ chooses the next sample 𝑥𝑖 =
𝑓𝑖((𝑥0, ℎ(𝑥0)), …, (𝑥𝑖−1, ℎ(𝑥𝑖−1))) to query and add to the audit set. After the 

query budget has been spent, the end result of the algorithm is the audit set 𝑆 =
𝒜︀(ℎ). Note that most published black-box audits of web platforms are not active 
[139]. In this case, an audit algorithm reduces to a single (possibly randomized) 

function 𝑓𝑠 which does not depend on the answers provided by the model provider.

4. Should 𝒳︀ be infinite, [149] notes that it suffices to sample a finite i.i.d. subset 𝒳̃︀ and extend 
all the following bounds by classical generalization bounds.
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3.4. The manipulation-proof auditing framework

Following the framework of Yan & Zhang [1], the model provider is assumed to 

be self-consistent, i.e. when the model provider returns a given output 𝑦 = ℎ(𝑥) 
to an auditor’s query 𝑥, the model provider commits to this value and cannot 

return a different answer 𝑦′ = ℎ(𝑥) if 𝑥 is queried again at a later moment in 
time. Furthermore, as explained in the threat model Figure 3.1, it is assumed that 

the auditor knows the hypothesis class ℋ︀ ⊆ {0, 1}𝒳︀ of the model implemented 
by the model provider. The self-consistency of the model provider together with 

the knowledge of the hypothesis class defines a subset of “plausible” models in ℋ︀ 

that have the same answers as the model provider on the current audit set 𝑆. This 
subset is called the version space [130, 157].

Definition 3.1 (Version space) Define the model ℎ ∈ ℋ︀ and audit set 𝑆 ⊂ 𝒳︀. The 

version space of ℎ induced by 𝑆 is

ℋ︀(ℎ, 𝑆) = {ℎ′ ∈ ℋ︀ : ∀𝑥 ∈ 𝑆, ℎ′(𝑥) = ℎ(𝑥)}.

We assume that the model provider seeks to maximize its profits, which is not 
necessarily aligned with the property that the regulator seeks to enforce. During 

the audit process, the auditor incrementally builds an audit set 𝑆 ⊆ 𝒳︀ based on 
their previous queries and the answers of the model provider. The goal of the 

auditor is to produce an estimate 𝜇̂ as close as possible to the real value while 
being robust to the potential manipulations implemented by the model provider. 
We now formulate the two requirements of the manipulation-proof (MP) auditing 
problem, as introduced in [1].

Create an algorithm 𝒜︀ with smallest budget s such that,
(fidelity) |𝜇(ℎ, 𝒜︀(ℎ)) − 𝜇(ℎ, 𝒳︀)| < 𝜀

(manipulation-proofness) diam𝜇ℋ︀(ℎ, 𝒜︀(ℎ)) < 𝜀
(3.4)

Fidelity is the classical estimation constraints. It requires the estimated value 𝜇̂ =
𝜇(ℎ∗, 𝑆) to be close to the real value 𝜇(ℎ, 𝒳︀). In addition, manipulation-proofness 

requires that if the model provider changes its implemented instance from ℎ to 

ℎ′ while respecting the self-consistency constraint ℎ′ ∈ ℋ︀(ℎ, 𝑆), the difference 

between the previous 𝜇(ℎ, 𝒳︀) and new 𝜇(ℎ′, 𝒳︀) values of 𝜇 must be bounded. 

Therefore, the 𝜇-diameter is the biggest change in the value of 𝜇 the auditor would 
accept if the model provider changed to another (consistent) hypothesis.

3.5. Comparing manipulation-proof auditing algorithms

There are two ways to compare two audit algorithms 𝒜︀ and 𝒜︀′. Either fix a target 

manipulation-proofness guarantee 𝜀 and evaluate the number of queries needed 
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Algorithm Query complexity

Random sampling (Algorithm 1) 𝒪︀( 1
𝜀2 log|ℋ︀|)

Optimal deterministic [1] Cost𝜀(ℋ︀)
Oracle based approximation (AFA) [1] 𝒪︀(log|ℋ︀| log|𝒳︀| Cost(ℋ︀))

Table 3.1:  The query complexity of different auditing algorithms in the 
manipulation-proof framework, extracted from Yan et al. [1]

by 𝒜︀ and 𝒜︀′, or fix the audit budget 𝑠 and evaluate the 𝜇-diameter of the audit 

sets built by 𝒜︀ and 𝒜︀′.

Yan & Zhang [1] focused on the former: the study of the query complexity of 
different audit algorithms. For general hypothesis classes, they introduced three 
auditing algorithms. The first one is the baseline random audit algorithm. This 
audit algorithm consists in sampling among points with positive and negative sen

sitive attributes, and computing the empirical frequencies of the events (ℎ(𝑋) =
1 | 𝑋𝐴 = 1) and (ℎ(𝑋) = 1 | 𝑋𝐴 = 0) (see Algorithm Algorithm 1). To capture 
the minimal query complexity attainable by deterministic audit algorithms, they 

introduced a second algorithm based on the recursive minimization of Cost(ℋ︀). 
Finally, T. Yan and C. Zhang introduced a third, oracle-based, algorithm that we 
coin AFA. We summarize the query complexities proved by [1] in Table 3.1.

Motivated by the implementation of MP audit algorithms, we choose to focus on 

the second comparison approach: fixing an audit budget and evaluating the 𝜇-
diameter. This approach is better suited to our situation since in practice, auditors 
have a limited query budget that would be agreed upon with the model provider 
prior to the audit.

3.6. The computational complexity of manipulation-proof auditing

As exposed in Table 3.1, the best attainable query complexity, as well as the query 

complexity of the more practical AFA algorithm depend on the value of Cost(ℋ︀). 
In addition, the computational complexity of AFA [1] is the time to train a model 

from the hypothesis class ℋ︀ multiplied by the query complexity. However, T. Yan 

and C. Zhang prove that Cost(ℋ︀) is hard to compute, hard to approximate and 
hard to optimize [1]. Thus, not only it prevents practical implementations of the 
optimal deterministic algorithm, it also prevents practical analysis of the query 
complexity and computational complexity of AFA for large models that are costly 
to train.

4. The competitive effectiveness of random audits
Current state-of-the-art models for tabular data (see Figure 3.5) and image data 
(see e.g. [153]) are able to fit very large train sets with close to perfect accuracy 
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while retaining good generalization properties. In our setting this would mean 

that these models can represent any binary classification function 𝑓 : 𝒳︀ → {0, 1} 
of the input space. As we saw in Subsection 3.3.6, the only tractable algorithm 
(AFA [1]) that was proposed to solve the MP auditing task (Equation (3.4)) is still 
too computationally intense to audit large models because it requires to be able to 
train a lot of copies efficiently. Moreover, while [1] experimented on small datasets 
with linear models, there exists no implementations or practical experiments on 
larger models. Thus, the potential gains brought by AFA are hard to predict. Yet, 
for AFA to be used in practice, it would be necessary to balance the extra cost 
induced by auditing with AFA with the added guarantees of AFA. Thus, a natural 
practical question arises. Is the added manipulation-proofness guarantee 
worth paying the computational toll?

To answer this question, instead of analyzing Cost(ℋ︀) (which is hard to 

compute and derive) as [1], we directly express the value of diam𝜇ℋ︀(ℎ, 𝑆) for 

specific hypothesis classes. Identifying hypothesis classes ℋ︀ wherein the value of 

diam𝜇(ℎ, 𝑆) remains constant across all audit sets 𝑆 allows us to find scenarios 
in which enhancing manipulation-proofness guarantees beyond that of a random 
baseline is impossible.

In this section, we consider three typical but insightful forms of hypothesis space 

ℋ︀ to better understand this balance between computational cost and added 
robustness. We prove in Subsection 3.4.1 that for hypothesis classes shattering the 
whole input space, all the audit algorithms have the same performance as random 
sampling. Next, to understand what happens for classes that are only able to fit a 

part of the dataset, we consider the illustrative class ℋ︀dict
𝑚  of dictionaries of size 𝑚. 

We derive the exact value of their 𝜇-diameter in Subsection 3.4.2 and show the link 
between the memory as an intuitive notion of the capacity and the MP guarantees 
obtainable when auditing dictionary models. Last but not least, building on the 
results of Subsection 3.4.1 and Subsection 3.4.2, we introduce a formal notion of 
the capacity of a binary classification hypothesis class as the maximum number 
of samples a model provider can interpolate while still retaining good generaliza
tion performance. Under this definition, we prove in Subsection 3.4.3 that large 
capacity models cannot be audited more efficiently than by the random baseline.
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Require: Proportions 𝛽1, 𝛽2, budget 𝑠
Ensure: audit dataset 𝑆 with |𝑆| = 𝑠

1 𝑠+ ← ⌊𝛽1|𝒳︀𝐴|⌋, 𝑠− ← ⌊𝛽2|𝒳︀𝐴|⌋
2 𝑆+ ← sample 𝑠+ points in 𝒳︀𝐴 without replacement

3 𝑆− ← sample 𝑠− points in 𝒳︀𝐴 without replacement

4 Return 𝑆 = 𝑆+ ⊔ 𝑆−

Algorithm 1: The random sampling audit strategy

4.1. Hypothesis classes that can fit the dataset entirely

To build intuition on the following theorems, let us first consider classes able to 

fit any labeling of 𝒳︀. This corresponds to the case of a model provider with a very 

large, over-parametrized hypothesis class ℋ︀ able to fit any labeling of the whole 

input space 𝒳︀.5 This assumption is equivalent to considering the hypothesis class 

ℋ︀ = {0, 1}𝒳︀. Because all the functions from the input space to the output space 

are possible, the answer of the model provider on a query 𝑥 does not give any 

information on the possible answers to the other queries in 𝒳︀. It follows, that no 
matter how the points are iteratively chosen, only the number of points (and the 
value of their associated sensitive attribute) will matter in the computation of the 

𝜇-diameter. We now formalize this intuition.

Theorem 3.1 (No need to aim) Let ℋ︀ = {0, 1}𝒳︀. For any audit set 𝑆 ⊆ 𝒳︀ and 

hypothesis ℎ ∈ ℋ︀,

diam𝜇ℋ︀(ℎ, 𝑆) = 2 − (ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1) + ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 0))

Proof sketch. The first step in proving Theorem 3.1 relies on the fact that all 

the instances ℎ′ ∈ ℋ︀(ℎ, 𝑆) have the same value of 𝜇(ℎ′, 𝑆). After decomposing 

the 𝜇-diameter on 𝑆 and 𝑆, we use this fact to separate the 𝜇-diameter into the 
difference between a maximization and a minimization problem. The optima of 

these problems rely on the existence of hypotheses ℎ↑, ℎ↓ ∈ ℋ︀(ℎ, 𝑆) that exactly 

fit the sensitive attribute (resp. its negation) on 𝑆. Since ℋ︀ is the space of all 

functions, it is always possible to find such ℎ↑ and ℎ↓. Finally, we find these optima 
and simplify their expressions to reach that of Theorem 3.1. A complete proof is 
provided in Appendix C.

The values ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1) and ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 0) are aggregated quanti

ties that depend only on the relative proportion of sensitive (𝑥𝐴 = 1) and non-

sensitive (𝑥𝐴 = 0) samples in the audit set 𝑆. Therefore, for any pair (ℙ(𝑋 ∈
𝑆 | 𝑋𝐴 = 1), ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 0)), one can design a random sampling scheme 

5. This does not contradict the No Free Lunch theorem since here, the input space 𝒳︀ is finite.
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Figure 3.2:  The diameter (vertical axis) resulting from the amount of memory 
(horizontal axis) of the dictionary model studied in subsection 3.2. The 
various audit budgets are represented by different curve colors, while the 
optimal audit set appears as dashed curves, and the random baseline audit 
sets as plain lines.

that achieves the desired relative proportions. We expose such algorithm in 
Algorithm 1. Since the auditor by definition knows the sensitive attribute of each 

sample, the idea is to sample points from 𝒳︀𝐴 and 𝒳︀𝐴 with the right proportions 

(𝛽1, 𝛽2) in 𝑆random. Setting (𝛽1, 𝛽2) = (ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1), ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 =
0)) in Algorithm  1 yields (ℙ(𝑋 ∈ 𝑆random | 𝑋𝐴 = 1), ℙ(𝑋 ∈ 𝑆random | 𝑋𝐴 =
0)) = (ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1), ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 0)). Following Theorem  3.1, any 

audit set 𝑆 with the same relative proportions (ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1), ℙ(𝑋 ∈
𝑆 | 𝑋𝐴 = 0)) yields the same 𝜇-diameter. Since any couple (ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 =
1), ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 0)) is also attainable by the random sampling algorithm 
described in Algorithm 1, when the hypothesis class can perfectly fit any 
arbitrary label distribution, all audit algorithms –active or not– have at 
most the same manipulation-proofness guarantees as random sampling.

As a side note, removing the assumption that the auditor knows the hypothesis 

class implemented by the model provider is equivalent to assuming ℋ︀ = {0, 1}𝒳︀. 
In this sense, by proving that random sampling is optimal when the hypothesis 

class is unknown, Theorem 3.1 demonstrates that knowing ℋ︀ is necessary (but 
not sufficient) to design more efficient manipulation-proof auditing methods.

4.2. An illustrative example with dictionaries

It is unlikely in practice that any hypothesis class can fit the entire input space 

𝒳︀. We now relax this assumption to pursue our analysis of the achievable manip
ulation-proofness guarantees of models with a large capacity. To that end, we 

introduce the class ℋ︀dict
𝑚  of dictionary models. A dictionary 𝑑 ∈ ℋ︀dict

𝑚  is built by 

choosing a set of 𝑚 ∈ ⟦𝑛⟧ samples in 𝒳︀ and storing the corresponding labels. 
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When the dictionary is asked to label a sample that it did not store, it returns 0 

as a default value. Define, for any set of vectors 𝑉 ⊆ 𝑅𝑑, 𝔖(𝑉 ) the set of vectors 

obtained from 𝑉  by including all permutations of the coefficients of each 𝑣 ∈
𝑉 . The hypothesis class of dictionaries of memory 𝑚 is formally introduced in 
Definition 3.2.

Definition 3.2 (Dictionary hypothesis class) Consider an input space 𝒳︀, 𝑛 = |𝒳︀|. 
The class of dictionaries of memory 𝑚 ∈ ⟦𝑛⟧ is defined as

ℋ︀dict
𝑚 = 𝔖({0, 1}𝑚 × {0𝑅𝑛−𝑚})

While such a hypothesis class is not likely to be used in a practical context (as 
it will typically fail to generalize beyond the encountered examples, exhibiting a 
blatant overfitting) it is simple enough to support an analysis of the MP guarantees 
for both randomized and optimal approaches. Moreover, its main parameter (the 

memory 𝑚) directly influences its capacity. The exact value of the 𝜇-diameter of 
dictionary hypothesis classes is exposed in Theorem 3.2. The proof can be found 
in Appendix D.

Theorem 3.2 (Memory and auditability) Consider 𝑆 ⊆ 𝒳︀, 𝑑 ∈ ℋ︀dict
𝑚 . Note 𝑚′ =

𝑚 − |𝑥 ∈ 𝑆 : 𝑑(𝑥) = 1|. The 𝜇-diameter of ℋ︀dict
𝑚 (𝑑, 𝑆) is given by

diam𝜇ℋ︀dict
𝑚 (𝑑, 𝑆) =

min(|𝒳︀𝐴 ∩ 𝑆|, 𝑚′)
|𝒳︀𝐴|

+
min(|𝒳︀𝐴 ∩ 𝑆|, 𝑚′)

|𝒳︀𝐴|

Proof sketch. The proof relies on the same development of the diameter as in 

the proof of Theorem 3.1 but instead of finding ℎ↑ and ℎ↓, we are able to give 

the values of the optima thanks to the structure of ℋ︀dict
𝑚 . The complete proof is 

exposed in Appendix D.

We are interested in the high memory 𝑚, low audit budget |𝑆| regime. In this 

situation, there exist couples (𝑆, 𝑚) such that |𝒳︀𝐴 ∩ 𝑆| ≤ 𝑚′ and |𝒳︀𝐴 ∩ 𝑆| ≤
𝑚′. Thus, in this regime, the 𝜇-diameter does not depend on the memorized 

points of the particular dictionary 𝑑 chosen by the model provider. Therefore, 

as for the case ℋ︀ = {0, 1}𝒳︀, in the high memory, low audit budget regime, all 
audit algorithms – active or not – have at most the same manipulation-proofness 
guarantees as random sampling.

Simulation of the impact of memory over diameter  The expression of the 

𝜇-diameter exposed in Theorem  3.2 is piecewise linear in the memory 𝑚. To 

gain intuition, we plot the value of diam𝜇ℋ︀dict
𝑚(𝑑,𝑆) in Figure  3.2 for a setting 

where |𝒳︀| = 1000, ℙ(𝑋𝐴 = 1) = 0.3 and the 𝜇-diameter of the random strategy 

is averaged over 100 realizations of 𝑆. We first observe the drastic impact of 
dictionary memory on an audit of a fixed budget: for instance, with an audit budget 
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of 300 (representing nearly one-third of the whole input space) an optimal audit 

set barely achieves a 𝜇-diameter of 1 when auditing dictionaries with memory 

𝑚 = 500. Furthermore, given a fixed audit budget, the gap between randomized 
and optimal audit sets shrinks as the memory grows. This is especially striking in 
low audit budget regimes, that correspond to a typical audit situation. Moreover, 

for an audit budget of 100 and memory values larger than 70% the random and 

optimal audit strategies have the same 𝜇-diameter. This observation hints that 
Theorem 3.1′s conclusions should hold for a broader set of hypothesis classes.

4.3. Tying it all together: large capacity and auditability

We derived in Subsection 3.4.2 the exact expression of the 𝜇-diameter for toy 
models able to memorize part of the input space. Motivated by the benign overfit

ting phenomenon [153, 156, 158, 159], we now consider the case of a hypothesis 

class that is able to perfectly fit any subset 𝑆 ⊆ 𝒳︀ of reasonable size, but require 

in addition that the resulting hypothesis ℎ∗ maintains good accuracy on the rest 
of the dataset.

It has been observed that contrary to common knowledge on the bias-variance 
tradeoff, large ML models can exhibit good generalization properties while per
fectly fitting the train data. This benign overfitting phenomenon (also related to 
double descent), is observed in models that are largely overparametrized compared 
to the training data available at hand. Nevertheless, we show in Figure 3.3 that 
trees and GBDTs can reach the maximum capacity, indicating that they also can 
interpolate the training data. Drawing intuition from the empirical characteriza
tion of benign overfitting in [153, 156, 158, 159], we derive the formal definition 
of a large capacity hypothesis class in Definition 3.3.

Definition 3.3 (Benign Overfitting Hypothesis class) Consider an input space 𝒳︀, 

a hypothesis class ℋ︀ ⊂ {0, 1}𝒳︀ and a labeling 𝑐 ∈ {0, 1}𝒳︀. ℋ︀ is said to exhibit 

benign overfitting with respect to labeling 𝑐 if there exists 𝑑0 ∈ 𝑁∗ and 𝜀 ∈ [0, 1) 
such that

∀𝑑 ≤ 𝑑0, 𝑆 ⊆ 𝒳︀, 𝜎 ∈ {0, 1}𝑑, ∃ℎ ∈ ℋ︀,

{
∀𝑥𝑖 ∈ 𝑆, ℎ(𝑥𝑖) = 𝜎𝑖 (fit any train set)
ℙ(ℎ(𝑋) = 𝑐(𝑋) | 𝑋 ∈ 𝑆) = 1 − 𝜀 (with low error on 𝑐)

As is stands, Definition 3.3 is tightly linked to the notion of version space. If ℋ︀ 

exhibits overfitting, we are guaranteed that all the version spaces ℋ︀(ℎ∗, 𝑆) (such 

that |𝑆| ≤ 𝑑0) derived from ℋ︀ contain a hypothesis that generalizes well on the 
whole dataset. Moreover, Definition 3.3 is the literal formalization of the notion of 
benign overfitting considered in [153] and [158]: models that can fit any labeling 
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–even random– of the train set while still having a good test performance when 
evaluated on the target distribution.

This definition of large capacity models enables the same analysis as in Theo

rem 3.1, without the requirement that the hypothesis class ℋ︀ spans the entire set 

of functions {0, 1}𝒳︀.

Corollary 3.1 (Benign overfitting and auditability) Let 𝒳︀ and ℋ︀ ⊆ {0, 1}𝒳︀ be 

any input space and hypothesis class. Assume that ℋ︀ exhibits benign overfitting with 

respect to the sensitive attribute 𝑋𝐴 and its opposite 1 − 𝑋𝐴6 , then for any 𝑑 ≤ 𝑑0, 

and 𝑆 ∈ 𝒳︀𝑑,

diam𝜇ℋ︀(ℎ∗, 𝑆) ≥ ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1) + ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 0)

−2 ℙ(𝑋 ∈ 𝑆) − 2𝜀(1 − ℙ(𝑋 ∈ 𝑆))

The proof of Corollary 3.1 is deferred to Appendix E Observe that lower bound on 

the 𝜇-diameter given by Corollary 3.1 only depends on the aggregated quantities 

ℙ(𝑋 ∈ 𝑆), ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1) and ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1). As for Theorem 3.1, 

this implies that no audit method, active or not can perform better than a simple 

random sampling baseline (Algorithm 1) with the right proportions 𝛽1 and 𝛽2. 

The term ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1) + ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 0) − 2ℙ(𝑋 ∈ 𝑆) indicates the 
importance of the relative proportion of these two audited groups in the audit 

set as in Theorem 3.1. The term 2𝜀(1 − ℙ(𝑋 ∈ 𝑆)) indicates that as expected, the 

larger the error rate 𝜀 gets, the smaller the 𝜇-diameter will be. Thus, when the 
hypothesis class exhibits benign overfitting, all audit algorithms –active or 
not– have at most the same manipulation-proofness guarantees as random 
sampling. This shows that, under manipulations, large models currently used in 
production are not auditable more efficiently than by random sampling.

5. Manipulability under random audits and model ca
pacity

As shown in Section 3.4, the random audit baseline is optimal when the model has 
a large capacity, but has no guarantee of optimality when the hypothesis class is 
constrained to lower capacities. To compare ML algorithms in practice, we now 
introduce a measure of manipulability under random audits and a measure of model 

capacity. We will use these methods to empirically evaluate the manipulability of 
auditing several models of increasing capacities in Section 3.6.

6. That is, Definition 3.3 holds for 𝑐 = 𝑥𝐴 and 𝑐 = 1 − 𝑥𝐴
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5.1. Measuring the manipulability under random audits of practical 
models

The manipulability of a hypothesis class ℋ︀, is defined (Equation (3.5)) as the 𝜇
-diameter obtained and averaged over audit datasets 𝑆 sampled by the random 

audit baseline Algorithm 1 with budget 𝑠.

Manipulability(ℋ︀, 𝑠) = 𝔼𝑆,ℎ∗[diam𝜇ℋ︀(𝑆, ℎ∗)] (3.5)

The manipulability under random audits is a lower bound of the auditor 
“power”  In a perfect situation, for any budget 𝑠 = |𝑆|, the auditor would be 

able to select the audit set 𝑆∗ that attains the minimum 𝜇-diameter, whatever the 

hypothesis class ℋ︀ and chosen hypothesis ℎ∗ ∈ ℋ︀ are. As explained in Subsection 
3.3.6, this is not possible in practice for computational reasons and thus cannot 
be simulated. Thus we evaluate the manipulability under random audits with the 
baseline random audit strategy (Algorithm Algorithm 1). Taking the expectation 

of diam𝜇ℋ︀(ℎ∗, 𝑆) over random audits allows to upper bound the value of the 

minimum attainable 𝜇-diameter min𝒜︀ diam𝜇ℋ︀(ℎ∗, 𝒜︀(ℎ∗)).

The manipulability under random audits is a lower bound of the model 
provider “power”  In a fully adversarial setting, whatever the hypothesis 

class ℋ︀, the model provider would choose the hypothesis ℎ∗ that maximizes 

diam𝜇ℋ︀(ℎ∗, 𝑆) for most of the audit sets 𝑆 the auditor could come up with. 
While this would effectively be the worst case for the auditor, it is however 
unlikely to happen in practice since the model provider would have to balance the 

maximization of the accuracy with the maximization of the 𝜇-diameter. Therefore, 
we consider the more practical situation in which the model provider can freely 

choose the hypothesis class ℋ︀ but the implemented instance ℎ∗ minimizes a 

classical loss 𝐿 adapted to the model being trained (e.g. cross-entropy or ℓ2 norm). 
This can be seen as a lower bound of the adversarial “power” of the model provider.

5.2. Measuring the capacity of practical models

There are multiple operationalizations of the notion of capacity, from theoreti
cally-rooted metrics such as the VC dimension [151] or Rademacher complexity 
[152], to more empirical definition such as the number of iterations until over
fitting [153]. The interplay between VC-dimension and manipulability under 
random audits is already pointed out in [1], where it is observed that models of 

VC-dimension higher than 1, 600 have a high manipulability under random audits.

Unfortunately, the VC dimension of a class is difficult to estimate in practical set
tings. Instead, the empirical Rademacher complexity (Equation (3.6)) is leveraged 
to quantify the capacity of the studied hypothesis classes. Informally in our setting, 
a hypothesis class has a high Rademacher complexity if whatever the labels and 

size of an audit set 𝑆, there exists an instance ℎ𝑆 ∈ ℋ︀ that fits those labels on 
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Figure 3.3:  Distribution of the capacity (horizontal axis) for different hyper
parameters choices on the three datasets (vertical axis). Each model is 
trained with different hyperparameter values with each couple (model, hy

perparameter) representing a different hypothesis class ℋ︀. For each (model, 

hyperparameter) couple, the empirical Rademacher values 𝑅𝑚(ℋ︀ ∘ 𝐷) are 

averaged over 15 realizations of 𝐷 and 𝜎𝑖 before computing the model 
capacity.

𝑆 with high accuracy. To avoid threshold effects in our experiments, we average 

the complexity over different sizes of 𝐷 considered in the Rademacher metric 
(Equation (3.7)). Formally:

𝑅𝑚(ℋ︀ ∘ 𝐷) = 1
𝑚

𝔼𝝈∼{0,1}𝑚[sup
ℎ∈ℋ︀

∑
𝑥𝑖∈𝐷

𝜎𝑖ℎ(𝑥𝑖)] (3.6)

Capacity(ℋ︀) = 𝔼𝐷∼𝒳︀𝑚,𝑚∼⟦|𝒳︀|⟧[𝑅𝑚(ℋ︀∘𝐷)] (3.7)

6. Experiments
In this section, we explore the relation of the manipulability under random 
audits (Equation  (3.5)) with the capacity of hypothesis classes (Equation  (3.7)). 
The following experiments were run on three tabular datasets: StudentPerf [131], 
COMPAS [132] and AdultIncome [120]. Dataset statistics and considered tasks 
are presented in Table 3.2. Neural methods on tabular data are still outperformed 
by tree methods [160]. We thus choose to focus our study on the four following 
models: linear models, perceptrons, decision trees and gradient-boosted trees. 

74



Chapter 3. – Leveraging knowledge on the hypothesis class

Figure 3.4:  Distribution of the Manipulability (manipulability under random 

audits) values (horizontal axis) of different models ℍ on a selection of datasets 

(vertical axis). Each bar represents a different model ℍ (trees, linear models, 
…). Each model is trained with different hyperparameter values with each 

couple (model, hyperparameter) representing a different hypothesis class ℋ︀. 

For each dataset, the size of the audit set is set to 10% of the dataset size: 

|𝑆| = 0.1|𝒳︀|. For each (model, hyperparameter) couple, the 𝜇-diameter are 

averaged over 15 audit datasets before computing the manipulability.

Similar to [160], we selected a range of hyperparameters for each model and 

sampled a total of 500 hyperparameters over the 4 models. In previous sections, 

we stated results with respect to a given hypothesis class ℋ︀. In the following 

experiments, a hypothesis class ℋ︀ represents a couple (model, hyperparameters). 

Thus, a model represents a family of hypothesis classes ℍ = (ℋ︀1, …, ℋ︀𝑓), each 

hypothesis class ℋ︀𝑖 being associated with a hyperparameters tuple.

The hyperparameters and their value range are listed in Appendix H (Table 6.1). 
For each model, we created a grid with all the possible combinations of hyperpara
meter values and ran our experiments on all the resulting (model, hyperparameter) 
couples.

6.1. Simulating hypothesis spaces with a broad range of manipula
bility and capacity

In Figure 3.4, we plot the manipulability under random audits of different hypoth
esis classes. These classes are constructed by using multiple hyperparameters for 

each family ℍ listed in Table  6.1; each dot then represents a specific (family, 
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dataset Size 𝑛 Features 𝑑 Task

StudentPerf 395 43 Predict if students pass the exam

COMPAS 6172 21 Predict subject recidivism

AdultIncome 22, 268 10 Predict if income is ≥50,000

Table 3.2: Datasets stats

hyperparameter set) couple. On one hand, for large datasets (such as AdultIncome 
and COMPAS), we observe that simpler models (linear, perceptron) have a very 
low manipulability, no matter the hyperparameter set used. On the other hand, 
for smaller datasets (such as StudentPerf), smaller models (such as linear models 
or perceptrons) can also fit the data hence also becoming harder to audit.

Similarly, in Figure 3.3, we plot the capacity of the simulated hypothesis classes on 
AdultIncome, COMPAS and StudentPerf. As discussed before, it can be observed 
that for AdultIncome and StudentPerf datasets, tree-based models reach the max

imum capacity value of 1. However, on the COMPAS dataset all hypothesis classes 

exhibit capacity values that do not exceed 0.2 points. This has been observed 
before [161] and does not affect our main argument on the link between model 
capacity and manipulability.

6.2. Measuring the 𝜇-diameter in practice

As originally defined in [1] and following the definition of the 𝜇-diameter, the 

evaluation of diam𝜇(𝑆,ℎ∗) requires to solve the following optimization problem:

maxℎ,ℎ′ |𝜇(ℎ, 𝑆) − 𝜇(ℎ′)|

subject to ℎ(𝑥) = ℎ′(𝑥) = ℎ∗(𝑥) ∀𝑥 ∈ 𝑆
(3.8)

This problem be separated in two optimization problems: the maximization/mini

mization over ℎ ∈ ℋ︀ of 𝜇(ℎ, 𝑆) under the constraint that ∀𝑥 ∈ 𝑆, ℎ(𝑥) = ℎ∗(𝑥).

maxℎ/minℎ 𝜇(ℎ, 𝑆)
subject to ℎ(𝑥) = ℎ∗(𝑥) ∀𝑥 ∈ 𝑆

(3.9)

As proposed by [1], we use the method introduced by [162] to reframe this 
constrained optimization problem as a sequence of weighted classification tasks. 
Then, we use off-the-self estimators from scikit-learn and XGBoost to perform the 
optimization with the appropriate weights.

6.3. Model capacity conditions manipulability

In Subsection 3.5.1 we compared different models and how difficult they were to 
audit, depending on the chosen hyperparameters. We now take a closer look at 
the impact of a model’s capacity on its manipulability under random audits, in 
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Figure 3.5:  Distribution of the manipulability under random audits values 
(vertical axis) of different models versus their capacity (horizontal axis) on a 
selection of datasets. Each point represents a couple (model, hyperparameter). 

For each dataset, the size of the audit set is set to 10% of the dataset size: 

|𝑆| = 0.1|𝒳︀|. For each (model, hyperparameter) couple, the Manipulability 

is averaged over 15 audit datasets, and the capacity is computed over 30 
randomizations of the dataset labels. The error bars represent the standard 
deviation.

an attempt to confirm the link between both concepts. We plot in Figure 3.5 the 
relation between the capacity of a hypothesis class and its manipulability under 
random audits. Points also represent (model, hyperparameter) couples, while the 

vertical error bars represent the standard deviation of the 𝜇-diameter values for 

different random audit sets 𝑆.

Consistent with the intuition and results developed until now, we observe that 
for all the datasets, the manipulability under random audits increases with the 
capacity of the hypothesis class. While on both AdultIncome and StudentPerf, 

the 𝜇-diameter reaches the maximum capacity value at almost 2, for COMPAS, 
the effect is not as dramatic. To highlight the connection between the results 
exposed in Section 3.4 and the empirical relation found between model capacity 
and manipulability under random audits, we focus next on two specific points, 

marked with the letters 𝐴 and 𝐵 in Figure 3.5.

First, consider the point 𝐴 = (Capacity ≈ 0, Manipulability ≈ 0). For a hypoth
esis class to have a null capacity, it has to have null Rademacher complexity on 
any subset of the sample space. This is verified by models that perform no better 

than random labels generation. Since the value of 𝜇(ℎ, 𝒳︀) of any instance of 
such hypothesis class is only determined by the ratio of samples with a positive 

sensitive attribute, the 𝜇-diameter of such hypothesis class is null. This is why in 
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Figure 3.5, models with near-zero capacity have a very low (if not null) manipula
bility under random audits.

The second notable point is 𝐵 = (Capacity = Capacitymax, Manipulability =
Manipulabilitymax). Any hypothesis with a unitary capacity has a unitary 

Rademacher complexity for any dataset size 𝑠 and thus shatters any subset of 𝒳︀. 

Therefore, at point B, Theorem 3.1′s hypothesis ℋ︀ = {0, 1}𝒳︀ holds. This means 
that hypothesis classes that are characterized by this point cannot be audited more 
efficiently than by a random audit strategy. It follows that (at least on StudentPerf 
and AdultIncome) the model provider can always choose a hypothesis class that 
cannot be audited efficiently by any strategy, forcing the auditor to prompt most 
of the input space to obtain robustness guarantees.

Generalization versus diameter  We saw that by choosing the right hypothesis 
class (that is, the right set of hyperparameters), the model provider can easily evade 
the audit. However, in practice the choice of hypothesis class is also guided by 
a classical train-dev-test separation, choosing the hyperparameter set that gener

alizes best. What is the typical 𝜇-diameter of hypotheses classes that generalize 
well? To answer this question, we simulate a 5-fold hyperparameter optimization 

procedure. For each family of models, we denote ℋ︀opt the hypothesis class with 
the set of hyperparameters that minimize the 5-fold average test loss in its model 

family ℍ. For each model family, ℋ︀opt is differentiated in Figure  3.5 by a star 
marker with red edges. Interestingly, for COMPAS and AdultIncome datasets and 

for all model families, the generalization-optimal hypothesis classes ℋ︀opt have a 
relatively low capacity compared to the maximum achievable capacity, especially 
for tree-based models. For the StudentPerf dataset, the results are more nuanced, 
most likely because the dataset has a limited size, which implies that it is simpler 
to reach high capacity values.

As a glimmer of hope, from point 𝐴 to 𝐵, there is a range of hypothesis classes 

for which the random strategy could be improved as seen by the size of the 𝑦
-axis error bars. Overall, the hypothesis classes that are most likely to be imple
mented by faithful platforms (the hypothesis classes that generalize well) are 

already straightforward to audit (they have a Manipulability ≈ 0). Yet, unfaithful 
platforms wanting to game the audit can always choose a hypothesis class that 
forces the auditor to issue a lot of queries to reach higher manipulation-proofness 
guarantees.

6.4. The cost of exhausting the auditor

We observed in Section 3.4 and Subsection 3.5.1 that the hypothesis classes that 
are the hardest to audit are those with the largest capacity. Yet, we also observed 
that the hypothesis classes most likely to be implemented (i.e. the ones with the 

highest generalization) have a low 𝜇-diameter and are not those with high capac
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Figure 3.6:  Distribution of the cost of exhaustion for the four model families 
(perceptron, linear, tree and GBDT) on the three considered datasets. The 

error bars show the 95% confidence interval on the values of the difference 

of Accuracytest for the best hypotheses in ℋ︀acc and ℋ︀𝜇. For all models, 
on all datasets (except for trees and linear models on StudentPerf), the cost 

of exhaustion is below 1%. Trees are the models with the highest cost of 
exhaustion, while for all the other models, the cost of exhaustion remains 
relatively low (in particular for the large capacities GDBTs), indicating a 
negligible accuracy cost for audit evasion.

ity. In the manipulation-proof framework of [1] we operate in, the model provider 
chooses the hypothesis class without constraints before disclosing it to the auditor. 

Therefore, when choosing a specific model family ℍ, a malicious model provider 
would have the possibility to trade performance (i.e. generalization capability) 
with the ability to attempt audit evasion. To understand the trade-offs involved in 

balancing these two objectives, we introduce the notion of CostOfExhaustion(ℍ) 
of a model family ℍ.

A model family ℍ = {ℋ︀1, …, ℋ︀𝐹 } is a set of hypothesis classes. The family ℍ of 

decision trees where each hypothesis class ℋ︀𝑖 corresponds to a maximum depth 

value 𝑖 is an example of model family. To define the CostOfExhaustion metric, 

we first introduce two particular hypothesis (ℋ︀acc and ℋ︀𝜇) classes of ℍ. ℋ︀acc is 

the hypothesis class in ℍ with the best trained test accuracy:

ℋ︀acc = arg maxℋ︀∈ℍ max
ℎ∈ℋ︀

Accuracytest(ℎ,𝒳︀). (3.10)
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Assuming that an honest model provider chooses its hypothesis class based on 

generalization capabilities, ℋ︀acc is the hypothesis class an honest model provider 

would actually choose. Then, define the hypothesis class in ℍ with the largest 

manipulability (for a fixed audit budget 𝑠):

ℋ︀𝜇 = arg maxℋ︀∈ℍ Manipulability(ℋ︀, 𝑠). (3.11)

Should a model provider try to escape audits at a low cost, they would try to find a 

hypothesis class whose optimal hypothesis ℎ∗ leads to a high 𝜇-diameter. Thus, the 

cost of exhaustion is the accuracy cost of using the hypothesis class ℋ︀𝜇 compared 

to using ℋ︀acc:

CostOfExhaustion(ℍ) =  max
ℎ∈ℋ︀acc

Accuracytest(ℎ,𝒳︀)

− max
ℎ∈ℋ︀𝜇

Accuracytest(ℎ,𝒳︀)
(3.12)

The cost of exhaustion is plotted in Figure 3.6, for the four model families already 

considered, on the three datasets. The error bars show the 95% confidence interval 

on the values of the difference of Accuracytest for the best hypotheses in ℋ︀acc 

and ℋ︀𝜇. For all models, on all considered datasets (except for trees and linear 

models on the dataset StudentPerf), the cost of exhaustion is below 1%. Trees 
are the models with the highest cost of exhaustion. In fact, as we observed in 
Figure 3.5, given enough capacity, trees can reach the maximum manipulability 
under random audits. Yet, it is known that without regularization, complex trees 
can easily overfit the training data, thus lowering the max test accuracy of the 

ℋ︀𝜇 class compared to the max test accuracy of ℋ︀acc. On the other hand, the 
models with the lowest cost of exhaustion (except on StudentPerf) are linear 
models. As observed on Figure 3.3, for all datasets, linear models span a small 

portion of the capacity range (around .1 points for StudentPerf and less than .01 
points for COMPAS and AdultIncome), compared to larger models (e.g. GBDTs) 
which cover almost the entire capacity range on StudentPerf and AdultIncome. 
This result is challenging for the existence of efficient audits in the manipulation-
proof framework. In fact, the witnessed low cost of exhaustion for larger capacity 
models indicates that platforms may evade audits at the cost of a minor loss in 
accuracy.

6.5. Effects of the audit set size

In this section, we experiment with different sizes of audit dataset and show that 

our conclusions do not change with the change in dataset size (we had |𝑆| = .1|𝒳︀| 
in previous experiments). To do so, we select three different hypotheses classes for 

each model family. We choose the hypothesis class that generalizes best ℋ︀opt, the 

hypothesis class with the lowest capacity ℋ︀− and with the highest capacity ℋ︀+. 
In Figure 3.7 we show the audit manipulability of each hypothesis class against the 
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Figure  3.7:  Evolution of the 𝜇-diameter with the size of the audit set 𝑆 
represented as a proportion of the total dataset size for the AdultIncome 
dataset. Each line represents an audited model, whose hyperparameters are 
either tuned for the best generalization, either tuned for the highest capacity 
or tuned for the lowest capacity. For each (model, hyperparameter) couple, 

the 𝜇-diameter is averaged over 15 audit datasets.

size of the audit dataset |𝑆|. The results indicate that there is no significant inver
sion of the manipulability under random audits between the various hypotheses 
in the range of interest. Results in Figure 3.7 are shown only for the AdultIncome 
dataset. T he results for the other datasets are showed in Appendix F, in Figure 6.1 
and 6.2, which both lead to the same conclusion.

7. Conclusion and discussions
The introduction of the manipulation-proofness framework [1] has certainly been 
an important step for auditors to start understanding that algorithmic audits can 
suffer from model provider manipulations and what cost that brings along.

In this work, we conducted a thorough exploration of the concept of manipulation-
proofness. We derived theoretical conditions on the hypothesis class implemented 
by the model provider for the impossibility of efficient manipulation-proof audits. 
We carried out a thorough experimental validation on the manipulability under 

random audits of state-of-the-art models for tabular data. Our results draw a 
connection between the capacity of the audited model and the manipulability of 
the audit task.

We now discuss some countermeasures to improve the audit robustness. A 
promising line of work is to require platforms to provide certificates. Since the 
goal of certificates is to provide a cheap verification procedure (at the cost of a 
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potentially high certificate generation cost), this would shift the computational 
burden to the model provider. One example of a fairness certificate was provided 
in [117]. Such extended assumptions (over mere black-box audits) are certainly an 
interesting research line for future works.

In the end, when implementing large-capacity models, a model provider can 
always game the audit without sacrificing too much accuracy. We believe that this 
demonstrates the limitations of black-box auditing for regulation, even when the 
hypothesis class used by the model provider is known to the regulator. We claim 
that regulators should be given more than black-box access to AI models as part 
of the audit procedure or that they should explore certification-based audits such 
as [117]. Therefore, we urge the community to participate in the search for audit 
frameworks that are both exploitable in practice and also supported by theoretical 
guarantees.
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Pour saisir le monde d’aujourd’hui, nous usons d’un 
langage qu fut établi pour le monde d’hier. Et la vie 
du passé nous semble mieux répondre à notre nature 
pour la seule raison qu’elle répond mieux à notre 
langage.

— Terre des hommes, Antoine de Saint-Exupéry

In the two previous chapters, the goal was to prevent manipulations during the 
audit by using some prior information available to the auditor. In this chapter, 
I take a different approach and explore methods to detect model manipulations 
after the audit. In this setting, the auditor can use any audit method to measure 
the metrics they are interested in, and then periodically check that the predictor 
they observed has not changed too much after the audit. One technique that can 
be used for model change detection is model fingerprinting.

Similarly to how image fingerprints can analyze the provenance of a picture by 
identifying artefacts due to the compression scheme, the specific sensor technol
ogy, or even the up-scaling method [163], model fingerprints analyze the outputs 

of a ML model ℎ to extract artefacts that are characteristic of ℎ itself. Model 
fingerprints were originally introduced to verify model provenance [164]. A model 

owner would extract a unique representation 𝑍ℎ, the fingerprint, from the output 

of their model ℎ. Later, he fingerprint 𝑍ℎ would be compared with the fingerprint 

𝑍ℎ′  extracted from another model ℎ′, which is suspected to be a stolen copy of 

ℎ. Finally, based on the comparison between 𝑍ℎ and 𝑍ℎ′ , the model owner would 

decide if they need to flag ℎ′ as stolen and take further action.

The initial goal of this work was to select the model fingerprint most adapted to 
our auditing use-case. However, this chapter instead presents a surprising artefact 
of fingerprinting evaluation. Fingerprinting evaluation consists in generating 

positive and negative model pairs (ℎ, ℎ′), where positive model pairs consist in 
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Figure 4.1:  The TPR@5% of most of the fingerprinting schemes proposed in 
the literature is at best as good as the simple baseline we introduce. Each 
colored dot represents the performance of an existing fingerprinting scheme 
evaluated on a given benchmark. The gray dots are fingerprinting schemes 
we created using our Query, Representation and Detection (QuRD) decom
position.

a victim model ℎ and a model ℎ′ stolen from ℎ (e.g. through model extraction), 

while for negative model pairs, ℎ and ℎ′ are totally unrelated (e.g. trained on 
a different dataset). A collection of such positive and negative pairs is called 
benchmark. Figure 4.1 displays the True Positive Rate (TPR@5%, see Paragraph 
Fingerprint evaluation for the exact definition) of existing fingerprints on two 
existing benchmarks, ModelReuse [165] and SACBench [166]. Figure 4.1 demon
strates that the simple baseline that we introduce (gray dashed lines) performs on par 

with existing state-of-the-art fingerprinting schemes (coloured dots), which are much 

more complex. Thus, in this work, we seek to understand the reasons behind this 
result from two angles:

Why does a simple baseline match complex fingerprints performance 
on existing benchmarks?

As in most of the model fingerprinting literature, we consider image classification 
models. Note that, contrary to model watermarking methods, fingerprinting does 
not provide any theoretical guarantees on the false alarm rate (e.g. false positives). 
Thus, a strong empirical evaluation of model fingerprinting schemes is paramount 
to ensure their empirical soundness. Our contributions will be the following.

1. We introduce a simple yet powerful baseline and provide theoretical guar
antees on its performance. Albeit on a simple model copy detection task, 
this constitutes the first theoretical analysis of the guarantees of a model 
fingerprinting scheme.

2. We survey and compare existing fingerprinting schemes for classification 
tasks. Our novel queries-representation-calibration decomposition (hereafter 
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we coin QuRD) enables us to systematize and thus uncover new and 
unexplored fingerprinting schemes. The novelty of QuRD lies in its mix 
of geometrical (distance between fingerprints leads to distance between 
models) and statistical insights (the fingerprint is then used to perform a 
statistical property test).

3. We compare existing benchmarks and investigate their differences in both 

the way the pair of test models (ℎ, ℎ′) are generated and the distinguisha

bility of the victim ℎ and suspected ℎ′ models. Our work constitutes the first 
systematic comparison of classifier fingerprinting benchmarks, and reveals 
insights into how to build more informative and challenging benchmarks. 
All the code required to re-run our experiments, implement new benchmarks 
and evaluate new fingerprints is available online.7.

1. Background and Setting
Stealing ML models  The possibilities for an adversary to steal a given model 
are endless. They could break into the infrastructure of their victim [167], perform 
black-box model extraction attacks [168, 169] or just use the output of the victim’s 
model to train their own. In this work, we consider adversaries seeking to steal 
the functionality of the victim’s model.

Detecting IP violation via model fingerprinting  The dominant approach to 
model fingerprinting is based on comparing the outputs of models on adversarial 
queries, as in AFA [170], TAFA [171], IPGuard [172], ModelDiff [165], FUAP [173], 
FCAE [174], DeepFoolF [175], and DeepJudge [176]. Other approaches leverage 
the sensitivity of ML models at random points sampled from the train set (e.g. 

SSF [164], ModelGif [177]), some explanations generated from the victim model ℎ 
ZestOfLIME [178] or even train classifiers to distinguish stolen from benign model 
MetaV [179]. Some other works explore the use of natural images (images in the 

training/validation set) to craft their query set 𝑆, as in FBI [180] or SAC [166]. All 
of these works try to detect model stealing, however comparison among them and 
the assumptions they make are rarely taken into consideration. In this work, we 
introduce a framework to compare and evaluate these fingerprints.

Problem setting  Consider an input space 𝒳︀, a space of labels 𝒴︀ = {1, …, 𝐶} 

with 𝐶 classes, a data distribution 𝒟︀ on 𝒳︀ and a ground truth concept 𝑐 ∈
{1, …, 𝐶}𝒳︀. A first party called the victim trains a model ℎ on a classification task 

𝒞︀, then deploys this model in production. A second party called the adversary 

wishes to recreate a model ℎ′ that is close to identical to ℎ (ℎ′ ≈ ℎ) to deploy it 

at a low cost. The task of checking whether a suspected model ℎ′ is a copy of the 

victim model ℎ is modeled as a property test [181].

7. https://github.com/grodino/QuRD
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2. Filling the gaps with the AKH baseline

Definition 4.1 (Model fingerprint) A model fingerprint 𝒯︀ is a (randomized) algo

rithm that takes two models ℎ and ℎ′ as input and returns 1 with high probability if 

ℎ′ is stolen from ℎ, 0 else.

{
if ℎ = ℎ′ then ℙ(𝒯︀(ℎ, ℎ′) = 1) > 2

3 𝐶𝑜𝑝𝑖𝑒𝑑 𝑚𝑜𝑑𝑒𝑙 !
if ℎ ≠ ℎ′ then ℙ(𝒯︀(ℎ, ℎ′) = 0) > 2

3 𝐽𝑢𝑠𝑡 𝑎𝑛 𝑜𝑡ℎ𝑒𝑟 𝑚𝑜𝑑𝑒𝑙

The fingerprint (a.k.a. the property test) should be effective, robust and unique. We 
also require the fingerprint to be efficient in terms of queries and samples.

1. Effectiveness: if ℎ′ = ℎ, then the suspected model is flagged by the victim 
with high probability.

2. Robustness: if ℎ′ is a slightly modified version of ℎ (via fine-tuning, pruning, 
model extraction …), then the suspected model should still be flagged.

3. Uniqueness: Original models ℎ′ ≠ ℎ are not flagged.
4. Efficiency: the test uses few queries to the suspected model ℎ′ and few 

samples 𝑥 from the data distribution.

Accessibility of data and models  The type of fingerprinting scheme that can 
be used by the victim depends on the access the victim has to the suspected model 

ℎ′. We will assume that the victim can freely query the suspected model ℎ′. Yet, 
the output of the suspected model will range from label-only query access, to top-
K labels query access, probits or logits query access and even to gradients query 
access. Following the fingerprinting literature, it is assumed that the victim has 

full access to its training data and model ℎ.

2. Filling the gaps with the AKH baseline
The first contribution of this paper is the proposal and analysis of a simple yet 
powerful baseline, which, as we observed in Figure 4.1 performs at least as well as 
State-Of-the-Art fingerprinting schemes.

It is assumed that the victim has access to samples from the input distribution, 
for example the test set they used to validate their model. The baseline refers to 
Tolstoy’s Anna Karenina principle that states “All happy families are alike; each 
unhappy family is unhappy in its own way”. Thus, instead of using random 

samples for the input space 𝒳︀, we look for points that are mis-classified by ℎ and 
compare the victim and suspected models on those points. Our baseline, coined the 
Anna Karenina Heuristic (AKH, Figure 4.2), proceeds as follows. First, the victim 

chooses a negative input: a point 𝑥 ∼ 𝒟︀ such that ℎ wrongly classifies 𝑥: ℎ(𝑥) ≠
𝑐(𝑥). We write 𝒟︀ℎ the resulting negative inputs distribution. Then, the victim 

queries the suspected model ℎ′ on 𝑥. Finally, if ℎ′(𝑥) = ℎ(𝑥) the suspected model 

ℎ′ is flagged as stolen, otherwise ℎ′ is deemed benign.
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Requires Sampling access to 𝒟︀, white-box ℎ, black-box ℎ′

1 Draw 𝑥 ∼ 𝒟︀ℎ (distribution on 𝒳︀ such that ℎ(𝑥) ≠ 𝑐(𝑥))
2 If ℎ(𝑥) = ℎ′(𝑥)
3 Return 1 (Stolen)

4 Else Return 0 (Benign)

Figure 4.2: The proposed baseline, AKH.

Proposition 4.1 (AKH guarantees) Consider ℎ, ℎ′ ∈ 𝒴︀𝒳︀ two models and 𝛼 =
ℙ(ℎ(𝑥) = 𝑐(𝑥)) (resp. 𝛼′ = ℙ(ℎ′(𝑥) = 𝑐(𝑥))) their accuracy. Let 𝛿 = 𝑑𝐻(ℎ,ℎ′) 

be the relative Hamming distance between ℎ and ℎ′ and 𝛿𝐶 = ℙ(ℎ(𝑥) ≠
ℎ′(𝑥) | ℎ(𝑥) ≠ 𝑐(𝑥)). The property test 𝒯︀𝑏 defined by AKH enjoys the following 

guarantees:

If ℎ = ℎ′,  ℙ(𝒟︀)[𝒯︀𝑏(ℎ, ℎ′) = 1] = 1

If ℎ ≠ ℎ′,  ℙ(𝒟︀)[𝒯︀𝑏(ℎ, ℎ′) = 0] = 𝛿𝐶 ≥ 𝛿 − (1 − 𝛼′)
1 − 𝛼

The proof of Proposition 4.1 is deferred to Appendix G. Proposition 4.1 establishes 

that AKH is a one-sided error test. Thus, in the favorable scenario where ℎ′ is 

copied (i.e. not tampered with), 𝒯︀𝑏 will always detect it. To simplify the analysis, we 
defined AKH using only one query to the suspected model. To further decrease the 
False Negative Rate, one should run the baseline multiple times. A majority vote 

among the values returned by 𝒯︀𝑏 decreases the False Negative Rate exponentially 

[181]. If instead of selecting negative examples (points 𝑥 ∈ 𝒳︀ that are wrongly 

classified by ℎ), the victim was to use random samples according to 𝒟︀, the test 

would still have a one-sided error but the True Negative Rate ℙ(𝒟︀)[𝒯︀(ℎ, ℎ′) = 0] 
would be equal to the hamming distance 𝛿 between ℎ and ℎ′. This gives us an idea 
on when AKH can outperform schemes based on random sampling: either when 

the error rate 1 − 𝛼 of the victim model ℎ is low or when the error rate 1 − 𝛼′ of 

the suspected classifier ℎ′ is low compared to 1 − 𝛼.

The experimental TPR@5% of AKH is displayed in Figure 4.1 in gray dashed lines. 
On ModelReuse (SDog120 dataset) and on SACBench, AKH performs on par with 
the best existing fingerprints. On ModelReuse (Flower102 dataset), AKH even 
performs better than the best existing fingerprints. In the two following sections 
we explore the reasons behind this observation by looking at the two players of 
Figure 4.1: the fingerprints and the benchmarks used to compare them.
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3. Query, Representation & Detection: the QuRD frame
work

The literature on model fingerprinting does not provide a unified definition of 
model stealing detection. Most works focus on particular transformations of the 
stolen model, which they seek to detect. Only a few works [172, 173, 180] are 
based on a rigorous formulation of the problem. Some fingerprinting schemes (e.g. 
ZestOfLIME or ModelGif) are described from a geometrical point of view: the goal 
is to create a distance between models to distinguish stolen models from unrelated 
models. On the other hand, some works are described from a statistical point 

of view: the goal is to test whether ℎ′ = ℎ or not. Thus, comparing and catego
rizing existing fingerprints is not trivial. As a second contribution to this paper, 
we propose an original decomposition of the existing (and future) fingerprinting 
schemes into three core components:

1. Query Sampling, which generates the query set 𝑆 ⊂ 𝒳︀ on which to query 

ℎ and ℎ′, e.g. selecting a subset of the victim model training set ℎ.
2. Representation, which computes a compact representation 𝑍ℎ = 𝑔(𝑌ℎ) 

and 𝑍ℎ′ = 𝑔(𝑌ℎ′) of the answers 𝑌ℎ = {ℎ(𝑥) : 𝑥 ∈ 𝑆} and 𝑌ℎ′ = {ℎ′(𝑥) :
𝑥 ∈ 𝑆} that are returned by the two models ℎ and ℎ′ on the sample 𝑆. A 

basic strategy is to use the raw answers as a representation, that is, 𝑍ℎ =
𝑌ℎ, 𝑍ℎ′ = 𝑌ℎ′ .

3. Detection, which uses the two fingerprints 𝑍ℎ and 𝑍ℎ′ , and possibly a set 

of calibration fingerprints {𝑍𝑖}𝑖, to decide whether ℎ′ is a stolen version of 

ℎ or not.

3.1. Query Sampling (Q)

Existing approaches use four main techniques to build the query set when gen
erating fingerprints, Uniform sampling, Adversarial sampling, Negative sampling, 
and Subsampling (see Table 4.1). Query Sampling (Q) methods are based on the 

transformation of a seed query set 𝑆seed, which is either the training set or the test 

set used by the victim when generating ℎ (both assumed to follow the same data 

distribution 𝒟︀), or images composed of random pixel values.

Uniform sampling  The easiest way to generate 𝑆 is to sample uniformly from 

the data distribution or from a seed set 𝑆seed ⊂ 𝒳︀.

𝑆 ∼ 𝒟︀  or 𝑆 ∼ 𝒰︀(𝑆seed) (4.1)

Adversarial sampling  Adversarial sampling exploits the intuition that models 
tend to be characterized by their decision-boundary [165, 172, 182]. Compared to 
uniform sampling, adversarial sampling leads to a better detection rate for a lower 

query budget 𝑠. Starting from a set of seed inputs 𝑆seed ⊂ 𝒳︀, adversarial sampling 
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Seed set 𝑆seed Uniform Adversarial Negative Subsampling Joint detector 
training

input space ∅ IPGuard ∅ ∅ MetaV

test set ∅ DeepJudge, 
FCAE

FBI ∅ ∅

train set ModelGif ModelDiff, 
FUAP, IPGuard, 
AFA, ModelGif, 
DeepJudge, 

SSF1

SAC ZestOfLIME, 
SAC

FUAP

Table 4.1:  Type of seed set 𝑆seed (rows), Query Sampling (Q) (columns), model 
access (emphasis) and Representation (R) (decorations) used. Adversarial 
sampling dominates the fingerprinting literature. Fingerprinting scheme ap
pearing in multiple cells either require or can accommodate both Sampling/
seed types. The text decoration stands for the access required to the remote 

suspected model ℎ′: no decoration = label access, underline = probits access, 
dashed underline = label or probit access, wavy underline = gradients access. 
The text emphasis indicate the type of Representation: no emphasis = raw 
model outputs, italicized = pairwise representation, bold = listwise represen
tation. 1SSF actually uses sensitive samples instead of adversarial samples.

computes a set of samples 𝑆adv, targeted or not, using the following optimization 
procedure.

𝑆adv = {arg max𝑢,‖𝑥−𝑢‖<𝜀 𝑑(ℎ(𝑥), ℎ(𝑢)), 𝑥 ∈ 𝑆seed} (4.2)

Common methods used for solving Equation  (4.2) include Projected Gradient 
Descent [183] or DeepFool [184]. Finally, the final query set is the concatenation 

of the seed and adversarial samples 𝑆 = (𝑆seed, 𝑆adv).

Negative sampling  As for adversarial sampling, negative sampling [166] enjoys 
better detection rates for a given query budget. However, it does not need to 

compute gradients of ℎ, it just needs query access to ℎ, which can dramatically 

speed up the generation of the query set 𝑆. The core intuition follows that if ℎ′ 

makes the same mistakes as ℎ, there is a high probability that the adversary stole ℎ.

𝑆 ⊂ 𝑆seed  subject to ∀𝑥 ∈ 𝑆, ℎ(𝑥) ≠ 𝑐(𝑥) (4.3)

Subsampling  Subsampling exploits domain knowledge to create new samples 

𝑉 (𝑥) = {𝑥𝑗}𝑗
 in the vicinity of a seed point 𝑥. Compared to negative and adver

sarial sampling, subsampling allows to create a large query-set with few samples 
from the data distribution.
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𝑆 = (𝑆seed, {𝑉 (𝑥)}𝑥∈𝑆seed
). (4.4)

[178] uses the super-pixel sampling technique of LIME [185] to generate images 

around each image in a seed set 𝑆seed.

3.2. Representation (R)

Once the model ℎ and ℎ′ have been queried on a sample of data points, the 

resulting outputs 𝑌ℎ and 𝑌ℎ′  must be recorded using some representation. We have 
identified three strategies in the literature: Raw Labels/Logits, Pairwise correlation, 
and Listwise correlation.

Raw labels/logits  The simplest representation of the set of answers collected 
from the two models would be the set of answers themselves (labels or logits). 

However, depending on the way ℎ′ was constructed (or not) from ℎ, different 
representations are more suitable.

𝑍ℎ = 𝑌ℎ ∈ (ℝ𝐶)𝑠  (logits) or {1, …, 𝐶}𝑠  (labels) (4.5)

Pairwise correlation  When the audit set 𝑆 consists of pairs of samples (𝑥, 𝑢) 
that have a specific meaning (e.g. 𝑢 is an adversarial version of 𝑥 as in ModelDiff), it 
is interesting to use these pairwise comparisons as the representation of the model.

𝑍ℎ = (𝑑(ℎ(𝑥), ℎ(𝑢)))(𝑥,𝑢)∈𝑆 ∈ ℝ𝑠
2 (4.6)

Listwise correlation  Generalizing the idea of pairwise correlation, if the audit 
samples are not specifically paired but comparison is still meaningful, the victim 
can compute the similarity between all pairs of answers and use the resulting 
similarity matrix as representation. This is what is used by SAC.

𝑍ℎ = (𝑑(ℎ(𝑥), ℎ(𝑢)))𝑥∈𝑆,𝑢∈𝑆 ∈ ℝ𝑠×𝑠 (4.7)

3.3. Detection (D)

Finally, once the victim has generated the fingerprints of their model and that of 

the suspected model (𝑍ℎ and 𝑍ℎ′ ), the last step is to compare 𝑍ℎ and 𝑍ℎ′  to decide 

whether to flag ℎ′ or not.

There exists two approaches to Detection (D): directly compute a distance (e.g. 
hamming as in AFA or mutual information as in FBI) between the generated 
fingerprints or learn a classifier that takes the two fingerprints and outputs a theft 
probability score as in MetaV. In both cases, the victim needs access to its own 

pool of fingerprints from unrelated models 𝒢︀ = {𝐺1, …, 𝐺|𝒢︀|), to calibrate the 

detection threshold.
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Figure 4.3:  TPR@5% gains on ModelReuse obtained by modifying the sampler 
of existing fingerprints. The sampler can be modified in two ways: drawing 
seed queries from the train vs test set (materialized as circles vs crosses) or 
using a different queries sampler (materialized as a different color). Selecting 
negative seed inputs for adversarial generation instead of the original seeds 

can lead to improvements on the order of 10 points (+14%).

3.4. The next 100 fingerprints

In this subsection, we highlight the benefits of our novel QuRD decomposition 
for creating new and improved fingerprinting schemes and compare the existing 
fingerprints on a previously under-explored axis: the query budget.

Fingerprint evaluation  The Effectiveness, Robustness and Uniqueness of finger
prints are evaluated by computing the Receiver-Operator Curve (ROC). The final 
Detection (D) step consists in threshing a distance or the output of a classifier 

based on the fingerprints 𝑍ℎ and 𝑍ℎ′ . The ROC shows the relationship between 

the True Positive Rate (TPR), which is the proportion of positive pairs (ℎ, ℎ′) 
that are flagged as positive by the fingerprint, and the False Positive Rate (FPR), 

which is the proportion of negative pairs (ℎ, ℎ′) that are flagged as positive by the 
fingerprint. The Receiver-Operator Curve (ROC) captures the trade-off between 
the cost to the victim of missing a stolen model compared to the cost of wrongly 
flagging a model as stolen. Recognizing the high cost of False Positives for the 

victim, we will report the TPR such that the FPR is below a threshold of 5%: 

TPR@5%, averaged over 5 runs with independent random seeds.

Creating new fingerprints using the QuRD framework  Following our QuRD 
framework, Table 4.1 categorizes exiting fingerprints (listed previously in Back
ground and Setting). Table 4.1 shows that a large part of the literature focused on 
fingerprints based on adversarial sampling. Several QuRD combinations have not 
been explored yet by the literature. Moreover, the schemes always focus on using 
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3. Query, Representation & Detection: the QuRD framework

Stealing and 
obfuscation methods

ModelReuse 
Flower102

ModelReuse 
SDog120

SACBench 
CIFAR10

same ✓ ✓ ✓

quantize ✓ ✓ ×
finetune × × ✓

transfer × × ✓M
od

el
 le

ak

prune ✓ ✓ ✓

probits ✓ ✓ ✓

label ✓ ✓ ✓

M
od

el
ex

tr
ac

ti
on

adversarial 
(labels)

× ×
✓

Table 4.2: Stealing and obfuscation methods implemented by different bench
marks.

Figure 4.4: Distribution of the conditioned Hamming distance 𝑑𝐶(ℎ,ℎ′) be

tween the models of each positive/negative (ℎ, ℎ′) pair.

only one type of Query Sampling (Q) but very rarely explore chaining or mixing, 
e.g.using negative samples as the seeds for generating adversarial examples. 
Thus, to explore the space of QuRD combinations, we re-implemented the Query 
Sampler, Representation, and Detection of four existing fingerprints: ModelDiff, 

SAC, IPGuard and ZestOfLIME. We mixed them to create ∼ 100 new fingerprints. 
In Figure  4.1, gray-edged dots represent such QuRD combinations. Of course, 
not all new combinations are worth considering, as many QuRD combinations 
exhibit lower TPR@5% than existing fingerprints. Thus, in Figure 4.3 we show the 
potential improvements that can be reached by modifying the Query Sampler (Q) 

and/or the seed set 𝑆seed of existing schemes on ModelReuse. Figure 4.3 shows 

that it is possible to increase the TPR@5% of IPGuard by 10 points (+14%) simply 
by choosing negative seed samples as the starting points for the generation of 
adversarial examples.

Comparing apples to apples: a focus on the query budget  Although not 
displayed in Table  4.1, the query budget required by the existing fingerprints 
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Figure 4.5: The effect of the query budget 𝑠 on the Efficiency and Robustness 
of existing fingerprints, as measured by TPR@5%.

can vary greatly. For example, ZestOfLIME requires from 1000 to 128000 queries 

while FBI only requires ∼ 100 queries to reach the advertised performance. In 
Figure 4.5 we show the TPR@5% of existing fingerprints along our AKH baseline 
and selected QuRD variations. Keeping a small query budget is of paramount 
importance, mainly to remain stealthy against potential defenses [186], but also 
to avoid disrupting the remote service with (tens to hundreds of) thousands of 
queries. Once more, we observe that fingerprints based on negative sampling 

equal or outperform fingerprints based on adversarial sampling. From 0 to 100 

queries for SACBench and 0 to 50 for ModelReuse, most fingerprints exhibit 

notable improvements at each query budget increment. After 100 (or 50) queries, 
most fingerprints show a plateau. Thus, it appears that there exists an optimal 
query budget, dependent on the benchmark but not on the fingerprinting scheme. 
Finally, schemes based on negative sampling appear to suffer a lower variance 
than adversarial-based fingerprints, especially on SACBench.

Although the performance of most fingerprints plateau after 50-100 queries, the 
performance of some fingerprints (e.g. ModelDiff and SAC) suffers when the query 

budget increases from 100 to 400 queries. This phenomenon is observable only for 
schemes whose representations are based on a pairwise or a listwise comparison. 
We believe that when the number of query points is increased, the self-correlation 
increases regardless of the fact that a pair is positive or negative. Thus, the gap 
between the positive pair distance and the negative pair distance decreases with 
budget, which in turn decreases the performance of the fingerprint.

4. Fingerprinting benchmarks
Because there are no strong guarantees regarding Effectiveness and Robustness of 
fingerprinting schemes, proper empirical evaluation is critical to assessing their 
performance. The main difficulty of evaluation lies in the definition (and imple

mentation) of realistic positive (ℎ′ = ℎ) and negative (ℎ′ ≠ ℎ) model pairs. To do 

this, we need to separate how the adversary steals the model (how to achieve ℎ′ =
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Model leak Probit extraction Label extraction

Fingerprint same quantize finetune transfer prune vanilla vanilla adversarial

IPGuard 1.0 ± 0 1.0 ± 0 1.0 ± 0 1.0 ± 0 0.94 ± .01 0.64 ± .02 0.12 ± 0 0.02 ± .01

ModelDiff 1.0 ± 0 1.0 ± 0 1.0 ± 0 1.0 ± 0 0.94 ± .01 0.59 ± .05 0.14 ± .02 0.16 ± .07

Random 1.0 ± 0 0.93 ± .03 1.0 ± 0 0.48 ± .2 0.71 ± .02 0.46 ± .01 0.07 ± .02 0.06 ± .05

SAC 1.0 ± 0 1.0 ± 0 1.0 ± 0 1.0 ± 0 0.92 ± 0 0.81 ± 0 0.59 ± .02 0 ± 0

ZestOfLime 1.0 ± 0 1.0 ± 0 1.0 ± 0 0.78 ± .17 0.86 ± 0 0.74 ± .02 0.38 ± .05 0.29 ± .11

AKH (ours) 1.0 ± 0 1.0 ± 0 1.0 ± 0 1.0 ± 0 0.91 ± .01 0.78 ± .01 0.46 ± .01 0.92 ± .03

Table 4.3: TPR@0.05 of the existing fingerprints with a budget of 100 
queries. For each task, the best performance are highlighted.

ℎ) and how the adversary tries to conceal their theft by modifying the stolen model 
to avoid detection by the victim).

Stealing a model  1) Model leak: the adversary directly steals the architecture 

and weights of the model ℎ and uses them to solve the same task. This can happen 
via an internal leak [187] or an attack on the company infrastructure [167]. 2) 
(Adversarial) model extraction The adversary only has query access to the 
source model and trains their model based on the probits or the labels of the source 
model. The model extraction can either be probits or labels-based [168, 169]. In 
addition, depending on the threat model, the architecture trained by the attacker 

is not always the same as the victim model ℎ and the adversary might not have 
access to samples from the input domain [169].

Stolen model obfuscation  Once an attacker has stolen the model ℎ, they 
will try obfuscating their model to hide their theft. To avoid detection by model 
fingerprinting, the adversary may act on a combination of three aspects of the 
model inference process. 1) Model/weights tampering As first approach, the 
adversary can directly modify the model itself to remove potential watermarks 
embedded in the weights of the model: weights pruning [188, 189], model quanti
zation and finetuning or transferring the model to a small private dataset [165]. 2) 
Input modifications The second concealment trick is to apply transformations 
to the inputs fed to the model to limit the effect of adversarial inputs [180]: JPEG 
compression, equalization, or posterization. 3) Output noise: Finally, to avoid 
giving away too much information, the adversary can try to slightly alter the 
outputs of the model, e.g. returning only the Top-K labels, averaging the outputs 
over a neighbourhood of the input [190] or implementing model-stealing defences 
[191, 192].
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4.1. The majority of benchmarked tasks are solved

The performance shown previously in Figure 4.1, Figure 4.4, Figure 4.5 were all 
aggregated at a benchmark level. In this section, we separate the performance 
of the fingerprints with respect to the model-stealing and obfuscation methods. 
We will seek to answer the question What type of stealing and obfuscation 
methods can be considered as resolved issues and, hence, on which ones 
should practitioners focus? Positive pairs are grouped by task, i.e., how the 

copied model ℎ′ was created from ℎ, along with their corresponding negative 
pairs. Each task corresponds to the combination of a stealing and an obfuscation 
method. This decomposition is especially interesting since, as we will observe, a 
large portion of the tasks are solved by all the fingerprints, while the rest, and 
more complicated tasks, allows to discriminate the different fingerprints much 
more clearly.

As for benchmark-aggregated performance discussed in the QuRD Section, 
Table 4.3 shows that AKH is on par or surpasses all the previously introduced 
schemes. More interestingly, Table 4.3 reveals that a large part of the tasks consid
ered by ModelReuse and SACBench (namely the same, quantization, finetuning, 
and transfer tasks) are completely solved by existing fingerprints, as well as by 
AKH. The remaining unsolved tasks consist of model stealing by model extrac
tion, using no obfuscation attempts. Surprisingly, adversarial label extraction is 
easily detected by fingerprints based on negative sampling but not by adversarial, 
random, or subsampling-based fingerprints. Model extraction detection is, thus, a 
hard subtask of model stealing detection.

The results of Table 4.3 highlight an issue with the current benchmarks: trying 

to detect if a suspected model ℎ′ is the same as the victim’s ℎ up to small 
model perturbations (pruning, quantization, etc.) is fundamentally different from 
detecting model extraction. These two objectives differ in difficulty to be detected 
(as we mentioned earlier), but they also differ greatly in the efforts the adversary 
has to consent to reach the same accuracy.

4.2. Why does SACBench look so easy?

As we observed in Figure 4.1, the performance of fingerprints varies greatly from 
one benchmark to another. In this section, we try to uncover the reasons for 
this variability. A fingerprinting benchmark is essentially a procedure to generate 

positive and negative model pairs (ℎ, ℎ′) by varying the model stealing and obfus
cation methods. In the following, we investigate the properties of positive and 
negative pairs for each benchmark, in order to better understand the reasons why 
the various benchmarks seem to be unable to discriminate proposed fingerprint 
schemes and are beaten by the simple baseline presented in the previous section. 
ModelReuse and SACBench employ the same set of model stealing and obfusca

95



5. Related works

tion methods with two exceptions: ModelReuse uses model quantization as an 
obfuscation strategy, while SACBench performs adversarial model extraction. This 
explains the inferior performance of fingerprints based on adversarial sampling 
(ModelDiff and IPGuard) on SACBench.

However, the slight choice difference of the stealing and obfuscation methods 
included in ModelReuse compared to SACBench does not explain the exceptional 
performance of AKH and SAC compared to the other fingerprints. To that end, 

in Figure 4.4 we show the value of the conditioned Hamming distance 𝛿𝐶  (see 

Proposition  4.1) for all model pairs (ℎ, ℎ′). We note that the variability of the 

distance between ℎ and ℎ′ is much higher for ModelReuse than for SACBench. 
This indicates that SACBench’s process for creating the positive and negative pairs 
may not introduce enough diversity in the generated models, which could lead 
to overestimating the performance of its fingerprints. However, as observed in 
Figure 4.1, except SAC, all fingerprints have a comparable TPR@5% on SACBench 
and ModelReuse. To explain the difference in performance of AKH and SAC, we 

need to consider the separation between the distribution of 𝛿𝐶(ℎ,ℎ′) for the positive 

and negative model pairs (ℎ, ℎ′). Figure 4.4 shows a better separation between 

𝛿(ℎ, ℎ′) for positive and negative pairs in SACBench. On the other hand, both 
datasets of ModelReuse show a large overlap in the distributions of distances of 
positive and negative pairs. Thus, since SAC is based on negative sampling, it 
appears that the generated positive and negative pairs of SACBench are especially 
well suited to the SAC fingerprint they introduce.

5. Related works
Model-theft proactive defenses An alternative to fingerprinting is for the victim 
to choose a proactive solution consisting in watermarking their model (see, e.g., 
[193, 194] for an overview), or by defending it using defenses implemented at 
training or inference time [186, 191].

Connections with tampering detection A problem closely related to model 
fingerprinting is tampering detection. The goal is to detect if a model served by a 
platform is the intended model originally sent by the owner, or if the model has 
been tampered with [43, 164], by backdoor attacks [195] for instance.

Connections with interpretable model distance To debug model creation and 
to help ML audits, a body of work is interested in interpretable model distances. 
Instead giving a single distance value, it also gives an explanation such as domains 
on where the models differ the most [196] or a simple approximation of the 
difference of the two models [197].
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6. Conclusion
Our systematic analysis of the existing model fingerprinting schemes and bench
marks revealed a concerning evaluation artifact: the benchmarks studied are either 
not discriminative or solved by our simple AKH baseline. Firstly, most tasks are 
solved with almost any fingerprint. Secondly, the created victim/stolen model 
pairs are too easy to distinguish from victim/benign model pairs. Moreover, our 
QuRD framework reveals that schemes based on adversarial sampling are brittle 
compared to schemes using natural images.

While some of the tasks of model stealing detection can now be considered solved, 
several open challenges remain. One key issue is ensuring the robustness of fin
gerprinting techniques against adaptive adversaries who may actively attempt to 
evade detection. Furthermore, the development of effective fingerprints for other 
modalities than images would require further exploration.
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Quand la terre claquera dans l’espace comme une 
noix sèche, nos œuvres n’ajouteront pas un atome à 
la poussière. […] et dire que nous le savons et que 
notre orgueil s’acharne !

— L’Œuvre, Émile Zola

In this manuscript, I studied black-box audits, in which the auditor only has query-
access to the studied predictor. Aiming to find the minimal additional information 
required to derive guarantees in the case of a deceptive model provider, I intro
duced the notion of audit priors (Chapter 2 and 3) and suggested to use model 
fingerprinting techniques for efficient model monitoring (Chapter 4).

1. Summary of contributions
A common model provider defense to lobby against access to their data is that 
only the outputs of the predictor matter, for they are the only user-facing part 
of the system. Chapter 3 revealed however that without knowledge about the 
training data, even with full access to the hypothesis class of the predictor, audits 
are easily manipulated by deceptive model providers, especially as the capacity 
of the underlying model grows. Having access to (train, test, or external) data is 
thus necessary for robust audits. Yet, Chapter 2 exposed that, while necessary, this 
data access is not sufficient. Labeled data can reduce the magnitude of the manip
ulations that can remain undetectable. Unfortunately, the experiments exposed 
that model providers can still game audits by exploiting label noise inherent to 
a lot of prediction tasks involving tabular data. Finally, in Chapter 4, I explored 
how the new “vetted researcher” white-box access mandated by the DSA, could 
be used to improve external ML systems monitoring. Experiments revealed that 
proper evaluation and comparison of model change detection is subtle: it requires 
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to simulate the changes we want to detect in a realistic fashion. In the end, the 
performance of the baseline I introduced advocates for simple methods.

Going back to the four steps of AI audits –reconnaissance, systematization, mea
surement, and monitoring (Subsection 1.2.4)– the methods and tools presented in 
this manuscript provide defense mechanisms to the two last steps. The defenses 
worked by exploiting labeled data (Chapter 2), model structure (Chapter 3) or 
model weights (Chapter 4). All in all, audits are a matter of information gain.

2. Discussion
This manuscript exposed results for a specific type of predictor, namely binary 
classifiers8, with a set of worst-case assumptions for the auditor: a single, easily 
manipulatable, audit metric and a requirement to detect the smallest model change 
possible. The applicability of the auditing framework presented in this manuscript 
can thus be broadened in the following directions.

Beyond binary classifiers  Extending our manipulation defenses to the evalua
tion of other prediction tasks such as generative modelling or regression is a direct 
avenue for future work. In fact, it might even be easier than it seems because of 
how these systems are evaluated in practice. For example, the typical academic 
evaluation of text generation models consists in finding difficult tasks and reducing 
them to classification problems to calculate accuracy scores (e.g. MMLU [198], 
GSM1k [199] or MathQA [200]). Thus, since the evaluation is reduced to a (multi-
class) classification task, it should possible to directly adapt the methods presented 
in this manuscript.

Multiple audit metrics  The audit setting I considered was voluntarily simple: 
a single metric, measured by one auditor. To extend the results to a broader class 
of separation and sufficiency metrics (recall Definition 1.4), we can build on the 
insights of Chapter 2 and 3 that any fairness repair method can be transformed 
into a manipulation strategy to leverage the recent advances in fairness without 
demographics [201, 202]. Moreover, it was always implicitly assumed that the 
auditor only measured one metric. A direct follow-up would be to audit whether 

a model ℎ is on the Pareto front of a set of metrics, for example that it satisfies a 
predefined tradeoff between accuracy, fairness and privacy.

Incentive-aware change detection  The performance of our very simple base
line compared to much more complex methods in Chapter 4 revealed that the 
current evaluation of model change detection is too simplistic. Moreover, there is 
an issue of hyper-parameter tuning: all the methods require to tune a threshold 
by simulating the model changes that are expected. This means that there are 

8. except in Chapter 4 where we also considered multi-class classifiers
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no guarantees to detect model changes that have not been anticipated. The QuRD 
python fingerprint library I introduced in Chapter 4 is a good starting point to 
investigate these issues. Finally, when trying to verify if a model improved after an 
audit, not all changes need to be detected, only those that affect the audit metric. 
To that end, building on the simple AKH baseline, it would be possible to leverage 
influence functions [203] to further refine the selection of the fingerprint query 
set to the points that are most responsible for a change in the audit metric.

3. Perspectives
Concluding this manuscript, I would like to address some blind spots of ML 
auditing I encountered during my PhD: the user and its assumed passivity, the cost 
of auditing to our institutions and the growing impossibility to simply refuse to 
be subjected to AI decisions.

3.1. Users back in the governance loop

External audits are a way to delegate the estimation of the users’ risk/utility 
tradeoff of a system to an entity (the auditor) with greater resources and expertise. 
My PhD work, and to a greater extent, the robust auditing literature, focuses on 
the auditor and primarily treats users as passive agents to protect, or merely as 
data providers, never as active agents that can participate in the audit process. 
Realizing that they can collectively have a great impact on the model through their 
data (used for training), the field of collective [204] action has initiated tools for 
users to influence the AI systems they use.

A first solution to bring users back to the governance loop are reporting data
bases [56]. Regulators or a mandated entity actively collect user reports from 
users and continuously tests for systematic issues or disparate treatment evidence. 
The key challenges with this approach are the same as online user reviews: the 
entity collecting the reports must handle fake users and the fact that users will 
have different harm threshold before reporting an issue. This problem is similar 
to the issues in online reviews. Thus, to tackle these issues, bringing tools from 
the field of robust sparse voting [205] might be a fruitful direction in defending 
against malicious users.

An other solution is to increase the collaboration between users and auditors. 
Users can share (potentially privatized) personal data to help the auditor create 
their audit dataset. Conversely, by transparently sharing the conclusions of their 
investigations, auditors can help users relate their experience to more systematic 
analyses of the systems they use. A promising direction to allow users or auditors 
aggregate these (potential noisy) sources of information, lies in the recent devel
opments in the fields of testing with (private) advice [206] and prediction-
powered inference [207]. The idea is to use the auxiliary, potentially unreliable 
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data, to decrease the variance of the audit test statistic, thus reducing the number 
of necessary audit queries. In light of the results in this manuscript, it would be 
also relevant to study the resistance of these methods to adversarial manipulations 
of the predictions by the model provider.

Finally, before implementing the proposed auditing strategies, it is necessary to 
study their impact on users, both as a path to accountability (do the added auditing 
guarantees draws a path to better accountability ?) and as a data release mecha
nism that could negatively impact those whose data will be used for the audit 
(e.g. delivery platform workers penalized for donating their data to journalists 
scrutinizing the platform).

3.2. Shifting the auditing cost to providers

In the theoretical literature on auditing, and testing in general, there is a strong 
emphasis on the query budget: the number of queries to issue to the model 
provider to achieve guarantees on what is measured. The reasons are two-fold: 
less queries means a stealthier audit and lower data acquisition costs. This formal
ization of auditing places the burden on the auditor to issue the queries, come-up 
with computational methods to minimize the query budget and design tests that 
are manipulation-proof, powerful, with a low False Positive Rate. Meanwhile, the 
model provider only has to operate as usual, albeit with a few additional queries 
from the auditor.

A promising avenue to shift the cost of ML governance to providers is the use 
of cryptographic primitives to go from a harm-detection based governance to 
a system certification scheme. While still early and computationally expensive, 
primitives based on zero-knowledge proofs [208] and homomorphic encryp
tion [209] can certify some properties such as fairness or accuracy of a model 
whose verification only requires to check the model’s signature. See Section 2.2 
for examples of schemes applied to auditing. Therefore, instead of tasking auditors 
to monitor AI systems at the expense of taxpayers that might not even use said 
systems, regulators could force high-risk systems to implement these scheme and 
allow users to check the model signature to verify that they are using the right 
model. However, implementing this in practice is not yet feasible because of the 
computational toll of these cryptographic certification. Thus it would be fruitful 
to investigate what kind of metrics can cheaply be certified cryptographically and 
what kind of metrics require audit-type governance.

3.3. A broader outlook on algorithmic decision systems

Despite the apparent progress in the craft of ML predictors, the software systems 
we use every day are more and more concentrated in the hands of a few companies, 
feel arguably less and less useful and increasingly difficult to avoid.
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First observed and theorized by Foucault [210] when studying how the current 
form of prison and surveillance techniques came to be, the growth of communi
cation technology has resulted in an intensification of power relations. Since then, 
this link has also been observed in the history of the development of the internet 
[211], which enabled a much broader, un-targeted surveillance of the population, 
and in the recent developments of computer vision [212], which fuels surveillance 
and identification technologies. It turns out that this power is currently held in 
large parts by the tech companies providing the technologies we marvel at and 
the online platforms we use everyday.

Moreover, the phenomenon of enshittification suggests that the interests of those 
companies are not aligned with users’. Coined by Doctorow [213] enshittification 
describes the life-cycle of online platforms: “First, they are good to their users; then 
they abuse their users to make things better for their business customers; finally, 
they abuse those business customers to claw back all the value for themselves.”. 
While it is the most visible part [214], online platforms are not the only victims, 
other sectors such as enterprise software or aviation [215] are also concerned. This 
would not be an issue if users and businesses could easily get off those platforms, 
but they have become so instrumental and pervasive in our everyday lives that 
we are often not given a choice, especially when incorporated into government 
services.

Therefore, beyond auditing methods, we need methods and tools to help users 
hold the platforms they (are sometimes forced to) use accountable, not only for 
their mistakes, but also for failing to take the documented harms they cause into 
proper consideration when they design the tradeoffs of their systems.
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APPENDIX

A. Proof of Theorem 2.2

Notations

ℋ︀ Hypothesis class

ℱ︀ Set of fair models

ℋ︀𝑎 Set of expectable models

𝐷𝑌
𝑎 Audit set ground truth

𝛿 Distance between the groundtruth and the set of expectable 
model

ℎ𝑝 Original model of the model provider

ℎ𝑚 Manipulated model of the model provider

𝒳︀ Input space

𝒟︀ Data distribution

𝑥 Sample from input space

𝒴︀ Output space

𝑦 Sample from output space

𝒜︀ Protected feature

𝑧 Sample

𝑛 dimension of 𝒵︀

Let 𝐷𝑎 = (𝐷𝑋
𝑎 , 𝐷𝑌

𝑎 , 𝐷𝐺
𝑎 ) ⊂ 𝒳︀ × 𝒴︀ × 𝒢︀ be the audit dataset used to create the 

labeled-dataset prior (as in Definition 2.3). For the two groups 0, 1 ∈ 𝒢︀, define 

𝐺𝑖 = {𝑥, 𝑦 : (𝑥, 𝑦, 𝑔) ∈ 𝐷𝑎 and 𝑔 = 𝑖}. Let 𝒵︀ = 𝒴︀𝒳︀|𝐷𝑋
𝑎

 be the restriction of the 

set of models to the audit set. For any model ℎ restricted to 𝐷𝑋
𝑎 , the (relaxed) 

demographic parity gap is 𝜇(ℎ, 𝐷𝑎) = 1
|𝐺1| ∑𝑥,𝑦∈𝐺1

ℎ(𝑥) − 1
|𝐺0| ∑𝑥,𝑦𝐺0

ℎ(𝑥). If ℎ 

outputs labels, then the 𝜇 is the demographic parity gap, otherwise it is the relaxed 

demographic parity gap. Recall that ℱ︀ = {ℎ ∈ 𝒵︀ : 𝜇(ℎ, 𝐷𝑎) = 0}

As ℱ︀ is the kernel of the linear transformation 𝜇, ℱ︀ is a hyperplane of 𝒵︀. As ℱ︀ 

is a hyperplane of 𝒵︀ of finite dimension, it is closed in 𝒵︀.

Having an hyperplane lead to the natural definition of (hyper)cylinder, that we 
use in the following theorem.
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Definition 6.1 (Right cylinder) A right cylinder 𝐶(𝐻, 𝐵) is the set of all points 

whose orthographic projection on a hyperplane 𝐻  lies in a set 𝐵 with 𝐵 a subset of 

the boundary of 𝐻 . 𝐵 is called the base of the cylinder.

Theorem 6.1 (Detection probability, general) The probability 𝑃𝑑 that the auditor 

correctly detects a malicious model provider trying to be fair is ℙ(ℋ︀𝑎 \ 𝐶(ℱ︀, ℋ︀𝑎 ∩
𝜕ℱ︀) | ℋ︀𝑎).

Proof (Theorem  6.1) The auditor correctly detects a malicious model provider 
trying to be fair if and only if the manipulated model is fair but not expectable. 
The manipulated model is fair but not expectable if and only if the orthographic 

projection ℎ𝑚
∗ of ℎ𝑝 in ℱ︀ is not in ℋ︀𝑎 ∩ 𝜕ℱ︀. Thus, the manipulated model is 

fair but not expectable if and only if ℎ𝑝 ∉ 𝐶(ℱ︀, ℋ︀𝑎 ∩ 𝜕ℱ︀) (following Definition 

Definition 6.1). As by assumption ℎ𝑝 ∈ ℋ︀𝑎 (Equation (2.2)), it means that ℎ𝑝 ∈
ℋ︀𝑎 \ 𝐶(ℱ︀, ℋ︀𝑎 ∩ 𝜕ℱ︀). ∎

We now restate Theorem 2.2 and prove it.

Theorem 6.2 (Prior-Uniform detection rate) Under the dataset prior of definition 

Definition 2.3 with 𝑙(ℎ, 𝑥, 𝑦) = ℓ2(ℎ(𝑥) − 𝑦) the ℓ2 norm, and the uninformative 
prior assumption, the probability that the auditor correctly detects a malicious model 

provider trying to be fair is

𝑃𝑑 = 1 − 1
𝑊𝑛 (


∫

arccos(𝛿
𝜏)

0
sin𝑛(𝜃)𝑑𝜃 − 𝛿

𝜏
(1 − 𝛿2

𝜏2 )

𝑛−1
2

)

.

with 𝐷𝑌
𝑎  the labels of the samples in 𝐷𝑎, 𝛿 = 𝑑(𝐷𝑌

𝑎 , ℱ︀), the distance of 𝐷𝑌
𝑎  to ℱ︀ 

and 𝑊𝑛 the 𝑛-term of Wallis’ integrals.

Proof (Theorem  2.2) As established in Theorem  6.1, 𝑃𝑑 = 𝑃(ℋ︀𝑎 \ 𝐶(ℱ︀, ℋ︀𝑎 ∩
𝜕ℱ︀) | ℋ︀𝑎).

The probability 𝑃(ℋ︀𝑎 \ 𝐶(ℱ︀, ℋ︀𝑎 ∩ 𝜕ℱ︀) | ℋ︀𝑎) is the probability to be in the 

ball ℋ︀𝑎 without the probability to be in the intersection between the ball ℋ︀𝑎 

and the cylinder 𝐶(ℱ︀, ℋ︀𝑎 ∩ 𝜕ℱ︀). In the following, we denote 𝑉dashed(𝜏, 𝛿, 𝑛) this 
quantity.

As ℋ︀𝑎 is a ball, its volume is:

𝑉ball(𝜏, 𝑛) = 𝜋𝑛
2 𝜏𝑛

Γ(𝑛+2
2 )

with Γ(𝑧) = ∫inf
0

𝑡𝑧−1𝑒−𝑡 d𝑡 [216].

The volume of the intersection between the cylinder and the ball is the sum of the 
three following volumes:
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• the solid cylinder with height between −𝛿 and 𝛿
• the spherical cap of ℋ︀𝑎 that is above the previous cylinder (i.e. the part of ℋ︀𝑎 

with height between 𝛿 and 𝜏 )
• the spherical cap of ℋ︀𝑎 that is bellow the previous cylinder (i.e. the part of 

ℋ︀𝑎 with height between −𝛿 and −𝜏 )

According to [217], the volume of each spherical cap is

𝑉cap(𝜏, 𝛿, 𝑛) = 𝜋𝑛−1
2 𝜏𝑛

Γ(𝑛+1
2 )

∫
arccos(𝛿

𝜏)

0
sin𝑛(𝜃) 𝑑𝜃

And the volume of the cylinder of height 2𝛿 is

𝑉cyl(𝜏, 𝛿, 𝑛) = 2𝛿𝑉ball(
√

𝜏2 − 𝛿2, 𝑛 − 1)

Thus,

𝑉dashed(𝜏, 𝛿, 𝑛) = 𝑉ball(𝜏, 𝑛) − 2𝑉cap(𝜏, 𝛿, 𝑛) − 𝑉cyl(𝜏, 𝛿, 𝑛)

= 𝜋𝑛
2 𝜏𝑛

Γ(𝑛+2
2 )

− 2𝜋𝑛−1
2 𝜏𝑛

Γ(𝑛+1
2 )

∫
arccos(𝛿

𝜏)

0
sin𝑛(𝜃) 𝑑𝜃 − 2𝛿

𝜋𝑛−1
2 (

√
𝜏2 − 𝛿2)

𝑛−1

Γ(𝑛+1
2 )

According to Theorem  6.1, the probability that the auditor correctly detects a 

malicious model provider trying to be fair is 𝑃(ℋ︀𝑎 \ 𝐶(ℱ︀, ℋ︀𝑎 ∩ 𝜕ℱ︀) | ℋ︀𝑎). 
That is to say, it is the ratio of 𝑉dashed(𝜏, 𝛿, 𝑛) over 𝑉ball(𝜏, 𝑛):

𝑃𝑑 = 𝑃(ℋ︀𝑎 \ 𝐶(ℱ︀, ℋ︀𝑎 ∩ 𝜕ℱ︀) | ℋ︀𝑎)

= 𝑉dashed(𝜏, 𝛿, 𝑛)
𝑉ball(𝜏, 𝑛)

= 1 − 2
Γ(𝑛+2

2 )
Γ(𝑛+1

2 )
𝜋𝑛−1

2

𝜋𝑛
2

∫
arccos(𝛿

𝜏)

0
sin𝑛(𝜃) 𝑑𝜃 − 2𝛿

(𝜏2 − 𝛿2)
𝑛−1

2

𝜏𝑛
Γ(𝑛+2

2 )
Γ(𝑛+1

2 )
𝜋𝑛−1

2

𝜋𝑛
2

= 1 − 2√
𝜋

Γ(𝑛+2
2 )

Γ(𝑛+1
2 )

∫
arccos(𝛿

𝜏)

0
sin𝑛(𝜃) 𝑑𝜃 − 2𝛿√

𝜋
(𝜏2 − 𝛿2)

𝑛−1
2

𝜏𝑛
Γ(𝑛+2

2 )
Γ(𝑛+1

2 )

= 1 − 2√
𝜋

Γ(𝑛+2
2 )

Γ(𝑛+1
2 )(

∫
arccos(𝛿

𝜏)

0
sin𝑛(𝜃) 𝑑𝜃 − 𝛿

(𝜏2 − 𝛿2)
𝑛−1

2

𝜏𝑛
)


The function Γ can be written with Wallis’ integrals as: 𝑊𝑛 =
√

𝜋
2

Γ(𝑛+1
2 )

Γ(𝑛+2
2 )  with 

∀𝑛, 𝑊𝑛 = ∫
𝜋
2

0
sin𝑛(𝜃) 𝑑𝜃.

In the other hand,
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𝛿
(𝜏2 − 𝛿2)

𝑛−1
2

𝜏𝑛 = 𝛿
𝜏

(𝜏2 − 𝛿2)
𝑛−1

2

𝜏𝑛−1

= 𝛿
𝜏
(𝜏2 − 𝛿2

𝜏2 )

𝑛−1
2

= 𝛿
𝜏
(1 − 𝛿2

𝜏2 )

𝑛−1
2

Thus, 𝑃𝑑 = 1 − 1
𝑊𝑛

(∫arccos(𝛿
𝜏)

0
sin𝑛(𝜃) 𝑑𝜃 − 𝛿

𝜏 (1 − 𝛿2

𝜏2 )
𝑛−1

2 ). ∎

B. Proof of Corollary 2.3
Corollary 6.3 (Detection rate lower bound) If 𝑛 is even, the probability of detecting 

manipulations is lower bounded by

1
𝑊𝑛

𝛿
𝜏
(1 − 𝛿2

𝜏2 )

𝑛−1
2

≤ 𝑃𝑑 ≤ 1.

Moreover, the lower bound is maximized when 𝛿
𝜏 =

√
𝑛+3−

√
𝑛−1

2 .

Proof (Corollary  2.3) By definition, 𝑃𝑑 ≤ 1. We now prove the lower bound. 
Following Theorem 2.2, we have:

𝑃𝑑 = 1 − 1
𝑊𝑛 (


∫

arccos(𝛿
𝜏)

0
sin𝑛(𝜃)𝑑𝜃 − 𝛿

𝜏
(1 − 𝛿2

𝜏2 )

𝑛−1
2

)



Decomposing 𝑊𝑛 (for 𝑛 even) and using the positivity of sin on [0, 𝜋
2 ].

𝑊𝑛 = ∫
arccos(𝛿

𝜏)

0
sin𝑛(𝜃)𝑑𝜃 + ∫

𝜋
2

arccos(𝛿
𝜏)

sin𝑛(𝜃)⏟
≥0

𝑑𝜃

⇒ 1 ≥ 1
𝑊𝑛

∫
arccos(𝛿

𝜏)

0
sin𝑛(𝜃)𝑑𝜃

Finally, 𝑃𝑑 ≥ 1
𝑊𝑛

𝛿
𝜏 (1 − 𝛿2

𝜏2 )
𝑛−1

2 .

We now set out to prove that the lower bound according is maximized when 𝛿
𝜏 =√

𝑛+3−
√

𝑛−1
2 . First, define 𝑓(𝑥) = 𝑥

𝑊𝑛
(1 − 𝑥2)

𝑛−1
2  with the change of variable 𝑥 =

𝛿
𝜏 . We are interested in cases where 𝜏 > 𝛿, i.e. 0 < 𝑥 < 1.

𝑓  has an extremum iff 𝑓 ′(𝑥) = 0 somewhere in [0, 1]. The derivative 𝑓 ′(𝑥), 𝑥 ∈
[0, 1] is expressed as
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𝑊𝑛𝑓 ′(𝑥) = (1 − 𝑥2)
𝑛−1

2 − (𝑛 − 1)𝑥2(1 − 𝑥2)
𝑛−3

2

= (1 − 𝑥2)
𝑛−3

2 (𝑥2 +
√

𝑛 − 1𝑥 − 1)(𝑥2 −
√

𝑛 − 1𝑥 − 1)

Thus, on [0, 1], 𝑓 ′(𝑥) = 0 for the following elements:

𝑥0 = 1  and 𝑥1 = −
√

𝑛 − 1 +
√

𝑛 + 3
2

From a quick analysis of the second derivative 𝑓″(𝑥) shows 𝑓(𝑥0) ≤ 0 and 

𝑓(𝑥1) > 0. Thus 𝑓  is maximized at 𝑥1, i.e. 𝛿
𝜏 = −

√
𝑛−1+

√
𝑛+3

2 . ∎

C. Proof of Theorem 3.1
We now restate and prove Theorem 3.1

Theorem 6.1 (No need to aim) Let ℋ︀ = {0, 1}𝒳︀. For any audit set 𝑆 ⊆ 𝒳︀ and 

hypothesis ℎ ∈ ℋ︀,

diam𝜇ℋ︀(ℎ, 𝑆) = 2 − (ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1) + ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 0))

Proof (Theorem 3.1) The proof is executed in 4 steps: decomposition of the value 

of 𝜇(ℎ, 𝒳︀) on 𝑆 and 𝑆, decomposition of the 𝜇-diameter on 𝑆 and 𝑆, solving the 
optimization on the decomposed problems and conclusion.

Step 1: Decompose 𝜇
For any ℎ ∈ ℋ︀, 𝑆 ⊆ 𝒳︀
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𝜇(ℎ, 𝒳︀) = ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 1) − ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 0)
= ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 1, 𝑋 ∈ 𝑆)ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1)⏟

𝛼

+ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 1, 𝑋 ∈ 𝑆)ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1)⏟
1−𝛼

−ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆)ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 0)⏟
𝛼−𝛿

−ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆)ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 0)⏟
1−𝛼+𝛿

= 𝛼(ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 1, 𝑋 ∈ 𝑆) − ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆))⏟
𝜇(ℎ,𝑆)

+(1 − 𝛼)(ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 1, 𝑋 ∈ 𝑆) − ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆))⏟
𝜇(ℎ,𝑆)

+𝛿(ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆) − ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆))

= 𝛼𝜇(ℎ, 𝑆) + (1 − 𝛼)𝜇(ℎ, 𝑆)

+𝛿(ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆) − ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆))

Step 2: Decompose the 𝜇-diameter
For any ℎ, ℎ′ ∈ ℋ︀(ℎ∗, 𝑆),

𝜇(ℎ, 𝒳︀) − 𝜇(ℎ′, 𝒳︀) = 𝛼 (𝜇(ℎ, 𝑆) − 𝜇(ℎ′, 𝑆))⏟
=0  since ℎ(𝑆)=ℎ′(𝑆)=ℎ∗(𝑆)

+ (1 − 𝛼)(𝜇(ℎ, 𝑆) − 𝜇(ℎ′, 𝑆))

+𝛿(ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆) − ℙ(ℎ′(𝑋) = 1 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆))⏟
=0  since ℎ(𝑆)=ℎ′(𝑆)=ℎ∗(𝑆)

+𝛿(ℙ(ℎ′(𝑋) = 1 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆) − ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆))

Using the definition and separability of the 𝜇-diameter, we have

diam𝜇(ℎ∗, 𝑆) = max
ℎ∈ℋ︀(ℎ∗,𝑆)

𝜇(ℎ, 𝑆) − min
ℎ′∈ℋ︀(ℎ∗,𝑆)

𝜇(ℎ, 𝑆)

Therefore, by grouping the terms that depend on ℎ and ℎ′ in the previous devel
opment:
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diam𝜇(ℎ∗, 𝑆)

= maxℎ∈ℋ︀(ℎ∗,𝑆)[(1 − 𝛼)𝜇(ℎ, 𝑆) − 𝛿ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆)]

− minℎ′∈ℋ︀(ℎ∗,𝑆)[(1 − 𝛼)𝜇(ℎ′, 𝑆) − 𝛿ℙ(ℎ′(𝑋) = 1 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆)]

Step 3: Solve each optimization problem
To solve the two optimization problems, we come back to the definition of 𝜇.

= max
ℎ∈ℋ︀(ℎ∗,𝑆)

{(1 − 𝛼)ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 1, 𝑋 ∈ 𝑆)

−(1 − 𝛼 + 𝛿)ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆)}

= max
ℎ∈ℋ︀(ℎ∗,𝑆)

{(1 − 𝛼)ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 1, 𝑋 ∈ 𝑆)

+(1 − 𝛼 + 𝛿)ℙ(ℎ(𝑋) = 0 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆)} − (1 − 𝛼 + 𝛿)

Similarly,

= min
ℎ∈ℋ︀(ℎ∗,𝑆)

{(1 − 𝛼)ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 1, 𝑋 ∈ 𝑆)

−(1 − 𝛼 + 𝛿)ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆)}

= min
ℎ∈ℋ︀(ℎ∗,𝑆)

{(1 − 𝛼)ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 1, 𝑋 ∈ 𝑆)

+(1 − 𝛼 + 𝛿)ℙ(ℎ(𝑋) = 0 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆)} − (1 − 𝛼 + 𝛿)

We write ℎ↑ (resp. ℎ↓) the minimizer of  (resp.  ).

ℎ↑(𝑥) =

{

1  if 𝑥𝐴 = 1  and 𝑥 ∈ 𝑆

0  if 𝑥𝐴 = 0  and 𝑥 ∈ 𝑆
0  else

ℎ↓(𝑥) =

{

1  if 𝑥𝐴 = 0  and 𝑥 ∈ 𝑆

0  if 𝑥𝐴 = 1  and 𝑥 ∈ 𝑆
0  else

The optimizers ℎ↑ and ℎ↓ yield the optima
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= −(1 − 𝛼 + 𝛿) + (1 − 𝛼)ℙ(ℎ↑(𝑋) = 1 | 𝑋𝐴 = 1, 𝑋 ∈ 𝑆)⏟
=1

+(1 − 𝛼 + 𝛿)ℙ(ℎ↑(𝑋) = 0 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆)⏟
=1

= 1 − 𝛼
= −(1 − 𝛼 + 𝛿) + (1 − 𝛼)ℙ(ℎ↓(𝑋) = 1 | 𝑋𝐴 = 1, 𝑋 ∈ 𝑆)⏟

=0

+(1 − 𝛼 + 𝛿)ℙ(ℎ↓(𝑋) = 0 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆)⏟
=0

= −(1 − 𝛼 + 𝛿)

Step 4: Conclusion

diam𝜇ℋ︀(ℎ∗, 𝑆) = −

= (1 − 𝛼) + (1 − 𝛼 + 𝛿)
= 2 − (ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1) + ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 0))

∎

D. Proof of Theorem 3.2
We now restate and prove Theorem 3.2

Theorem 6.2 (Memory and auditability) Consider 𝑆 ⊆ 𝒳︀, 𝑑 ∈ ℋ︀dict
𝑚 . Note 𝑚′ =

𝑚 − |𝑥 ∈ 𝑆 : 𝑑(𝑥) = 1|. The 𝜇-diameter of ℋ︀dict
𝑚 (𝑑, 𝑆) is given by

diam𝜇ℋ︀dict
𝑚 (𝑑, 𝑆) =

min(|𝒳︀𝐴 ∩ 𝑆|, 𝑚′)
|𝒳︀𝐴|

+
min(|𝒳︀𝐴 ∩ 𝑆|, 𝑚′)

|𝒳︀𝐴|

Proof (Theorem  3.2) In the proof of Theorem  3.1, we established the following 

identity (for any hypothesis class thus for ℋ︀dict
𝑚 , and for any 𝑆 and 𝑑∗):
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diam𝜇ℋ︀dict(𝑑∗, 𝑆)

=
max

𝑑∈ℋ︀dict(𝑑∗,𝑆)
{ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1)ℙ(𝑑(𝑋) = 1 | 𝑋𝐴 = 1, 𝑋 ∈ 𝑆)

+ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 0)ℙ(𝑑(𝑋) = 0 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆)}

−
min

𝑑∈ℋ︀dict(𝑑∗,𝑆)
{ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1)ℙ(𝑑(𝑋) = 1 | 𝑋𝐴 = 1, 𝑋 ∈ 𝑆)

+ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 0)ℙ(𝑑(𝑋) = 0 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆)}

First, observe that in the two optimization problems, the value of the objective 

function does not depend on the values of 𝑑 on 𝑆. Moreover, the choices of the 

labels 𝑑(𝑥) for 𝑥 ∈ 𝑆 can be made freely as long as 𝑑 does not have more than 𝑚′ =
𝑚 − |𝑥 ∈ 𝑆 : 𝑑∗(𝑥) = 1| “1”s (because it has to use |𝑥 ∈ 𝑆 : 𝑑∗(𝑥) = 1| slots of 

memory to store the answers of 𝑑∗ on 𝑆).

Therefore, the dictionary that optimizes  is built by storing as many “1”s in 

𝑑 on the entries of 𝑥 ∈ 𝒳︀𝐴 ∩ 𝑆 within the limits of the 𝑚′ slots left. This leads to

= ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1)
min(|𝒳︀𝐴 ∩ 𝑆|, 𝑚′)

|𝒳︀𝐴 ∩ 𝑆|
+ ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 0) ∗ 1

Next, rewriting as a maximization problem, we get

= ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1) + ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 0)

− min
𝑑∈ℋ︀dict(𝑑∗,𝑆)

{ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1)ℙ(𝑑(𝑋) = 0 | 𝑋𝐴 = 1, 𝑋 ∈ 𝑆)

+ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 0)ℙ(𝑑(𝑋) = 1 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆)}

Similar to the case of , the dictionary that optimizes  is built by storing 

as many “1”s in 𝑑 on the entries of 𝑥 ∈ 𝒳︀𝐴 ∩ 𝑆 withing the limits of the 𝑚′ slots 
left. This leads to

= ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1) + ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 0)

 −ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1) ∗ 1 − ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 0)
min(|𝒳︀𝐴 ∩ 𝑆|, 𝑚′)

|𝒳︀𝐴 ∩ 𝑆|

Composing the expressions of  and , we get
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diam𝜇ℋ︀dict(𝑑∗, 𝑆) = ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1)
min(|𝒳︀𝐴 ∩ 𝑆|, 𝑚′)

|𝒳︀𝐴 ∩ 𝑆|

+ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 0)
min(|𝒳︀𝐴 ∩ 𝑆|, 𝑚′)

|𝒳︀𝐴 ∩ 𝑆|

Here, it is important to understand that in the notations ℙ(𝑋 ∈ 𝑆) or ℙ(𝑑(𝑋) =
1), 𝑋 is a random variable taking values in 𝒳︀ with a uniform probability. There

fore, ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1) = |𝒳︀𝐴∩𝑆|
|𝒳︀𝐴|  and ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 0) = |𝒳︀𝐴∩𝑆|

|𝒳︀𝐴|
, which 

simplifies the previous equation

diam𝜇ℋ︀dict(𝑑∗, 𝑆) =
min(|𝒳︀𝐴 ∩ 𝑆|, 𝑚′)

|𝒳︀𝐴|
+

min(|𝒳︀𝐴 ∩ 𝑆|, 𝑚′)

|𝒳︀𝐴|

∎

E. Proof of Corollary 3.1
We now restate and prove Corollary 3.1

Corollary 6.1 (Benign overfitting and auditability) Let 𝒳︀ and ℋ︀ ⊆ {0, 1}𝒳︀ be 

any input space and hypothesis class. Assume that ℋ︀ exhibits benign overfitting with 

respect to the sensitive attribute 𝑋𝐴 and its opposite 1 − 𝑋𝐴9 , then for any 𝑑 ≤ 𝑑0, 

and 𝑆 ∈ 𝒳︀𝑑,

diam𝜇ℋ︀(ℎ∗, 𝑆) ≥ ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1) + ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 0)

−2 ℙ(𝑋 ∈ 𝑆) − 2𝜀(1 − ℙ(𝑋 ∈ 𝑆))

Proof (Corollary 3.1) Note 𝛼1 = ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 = 1) and 𝛼0 = ℙ(𝑋 ∈ 𝑆 | 𝑋𝐴 =
0). In the proof of Theorem 3.1, we established the following equality:

diam𝜇ℋ︀(ℎ∗, 𝑆)

= maxℎ∈ℋ︀(ℎ∗,𝑆){𝛼1ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 1, 𝑋 ∈ 𝑆) + 𝛼0ℙ(ℎ(𝑋) = 0 | 𝑋𝐴 =
0, 𝑋 ∈ 𝑆)}

− minℎ∈ℋ︀(ℎ∗,𝑆){𝛼1ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 1, 𝑋 ∈ 𝑆) + 𝛼0ℙ(ℎ(𝑋) = 0 | 𝑋𝐴 =
0, 𝑋 ∈ 𝑆)}

And

9. That is, Definition 3.3 holds for 𝑐 = 𝑥𝐴 and 𝑐 = 1 − 𝑥𝐴
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= 𝛼1 + 𝛼0 − max
ℎ∈ℋ︀(ℎ∗,𝑆)

{𝛼1ℙ(ℎ(𝑋) = 0 | 𝑋𝐴 = 1, 𝑋 ∈ 𝑆)

+𝛼0ℙ(ℎ(𝑋) = 1 | 𝑋𝐴 = 0, 𝑋 ∈ 𝑆)}

Since ℋ︀ exhibits benign overfitting with respect to the sensitive attribute and 

|𝑆| ≤ 𝑑0, there exists ℎ ∈ ℋ︀(ℎ∗, 𝑆) such that ℙ(ℎ(𝑋) = 𝑋𝐴 | 𝑋 ∈ 𝑆) = 1 − 𝜀. 

Moreover,

ℙ(ℎ(𝑋) = 𝑋𝐴 | 𝑋 ∈ 𝑆) = ℙ(ℎ(𝑋) = 1 | 𝑋 ∈ 𝑆, 𝑋𝐴 = 1)ℙ(𝑋𝐴 = 1 | 𝑋 ∈ 𝑆)

+ℙ(ℎ(𝑋) = 0 | 𝑋 ∈ 𝑆, 𝑋𝐴 = 0)ℙ(𝑋𝐴 = 0 | 𝑋 ∈ 𝑆)

= 𝛼1
ℙ(𝑋𝐴 = 1)
ℙ(𝑋 ∈ 𝑆)

ℙ(ℎ(𝑋) = 1 | 𝑋 ∈ 𝑆, 𝑋𝐴 = 1)

+𝛼0
ℙ(𝑋𝐴 = 0)
ℙ(𝑋 ∈ 𝑆)

ℙ(ℎ(𝑋) = 1 | 𝑋 ∈ 𝑆, 𝑋𝐴 = 0)

Since ℙ(𝑋𝐴 = 0) + ℙ(𝑋𝐴 = 1) = 1, ℙ(𝑋𝐴 = 0) ≥ 0 and ℙ(𝑋𝐴 = 1) ≥ 0, we 
have

𝛼1ℙ(ℎ(𝑋) = 1 | 𝑋 ∈ 𝑆, 𝑋𝐴 = 1) + 𝛼0ℙ(ℎ(𝑋) = 1 | 𝑋 ∈ 𝑆, 𝑋𝐴 = 0)

≥ ℙ(𝑋𝐴 = 1)𝛼1ℙ(ℎ(𝑋) = 1 | 𝑋 ∈ 𝑆, 𝑋𝐴 = 1)

+ℙ(𝑋𝐴 = 0)𝛼0ℙ(ℎ(𝑋) = 1 | 𝑋 ∈ 𝑆, 𝑋𝐴 = 0)

= (1 − 𝜀)ℙ(𝑋 ∈ 𝑆)

Therefore, ≥ (1 − 𝜀)ℙ(𝑋 ∈ 𝑆).

With the same arguments, we prove ≤ 𝛼0 + 𝛼1 − (1 − 𝜀)ℙ(𝑋 ∈ 𝑆).

To conclude, diam𝜇ℋ︀(ℎ∗, 𝑆) ≥ 2(1 − 𝜀)ℙ(𝑋 ∈ 𝑆) − (𝛼0 + 𝛼1). ∎
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F. Effect of the audit dataset size

Figure 6.1:  Evolution of the 𝜇-diameter with the size of the audit set 𝑆 repre
sented as a proportion of the total dataset size for the COMPAS dataset. Each 
line represents an audited model, whose hyperparameters are either tuned 
for the best generalization, either tuned for the highest capacity or tuned for 

the lowest capacity. For each (model, hyperparameter) couple, the 𝜇-diameter 

is averaged over 15 audit datasets.

Figure 6.2:  Evolution of the 𝜇-diameter with the size of the audit set 𝑆 repre
sented as a proportion of the total dataset size for the StudentPerf dataset. 
Each line represents an audited model, whose hyperparameters are either 
tuned for the best generalization, either tuned for the highest capacity or 
tuned for the lowest capacity. For each (model, hyperparameter) couple, the 

𝜇-diameter is averaged over 15 audit datasets.
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G. Proof of Proposition 4.1
We now restate and prove Proposition 4.1

Proposition 6.1 (AKH guarantees) Consider ℎ, ℎ′ ∈ 𝒴︀𝒳︀ two models and 𝛼 =
ℙ(ℎ(𝑥) = 𝑐(𝑥)) (resp. 𝛼′ = ℙ(ℎ′(𝑥) = 𝑐(𝑥))) their accuracy. Let 𝛿 = 𝑑𝐻(ℎ,ℎ′) 

be the relative Hamming distance between ℎ and ℎ′ and 𝛿𝐶 = ℙ(ℎ(𝑥) ≠
ℎ′(𝑥) | ℎ(𝑥) ≠ 𝑐(𝑥)). The property test 𝒯︀𝑏 defined by AKH enjoys the following 

guarantees:

If ℎ = ℎ′,  ℙ(𝒟︀)[𝒯︀𝑏(ℎ, ℎ′) = 1] = 1

If ℎ ≠ ℎ′,  ℙ(𝒟︀)[𝒯︀𝑏(ℎ, ℎ′) = 0] = 𝛿𝐶 ≥ 𝛿 − (1 − 𝛼′)
1 − 𝛼

Proof (Proposition 4.1) Case ℎ = ℎ′

In this case, ∀𝑥 ∈ 𝒳︀, ℎ(𝑥) = ℎ′(𝑥). Thus, 𝒯︀ will always return 1.

Case ℎ ≠ ℎ′

ℙ(𝒯︀𝒟︀(ℎ,ℎ′) = 0) = ℙ(𝑏 : 𝑥 ∼ 𝒟︀ℎ)[ℎ(𝑥) ≠ ℎ′(𝑥)]

= ℙ(ℎ(𝑥) ≠ ℎ′(𝑥)  given ℎ(𝑥) ≠ 𝑐(𝑥))

= ℙ(ℎ(𝑥) ≠ ℎ′(𝑥), ℎ(𝑥) ≠ 𝑐(𝑥))
ℙ(ℎ(𝑥) ≠ 𝑐(𝑥))⏟

1−𝛼

We now decompose the event ℎ(𝑥) ≠ ℎ′(𝑥) on the partition (ℎ(𝑥) = 𝑐(𝑥), ℎ(𝑥) ≠
𝑐(𝑥)).

ℙ(ℎ(𝑥) ≠ ℎ′(𝑥)) = ℙ(ℎ(𝑥) ≠ ℎ′(𝑥), ℎ(𝑥) ≠ 𝑐(𝑥))
+ℙ(ℎ(𝑥) ≠ ℎ′(𝑥), ℎ(𝑥) = 𝑐(𝑥))

Using the inclusion {ℎ(𝑥) ≠ ℎ′(𝑥), ℎ(𝑥) = 𝑐(𝑥)} ⊂ {ℎ′(𝑥) ≠ 𝑐(𝑥)}

ℙ(ℎ(𝑥) ≠ ℎ′(𝑥), ℎ(𝑥) = 𝑐(𝑥)) ≤ ℙ(ℎ′(𝑥) ≠ 𝑐(𝑥))⏟
1−𝛼′

Thus,
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I. Details on the computation of the True and False Positive Rate

ℙ(𝒯︀𝒟︀(ℎ,ℎ′) = 0)

= ℙ(ℎ(𝑥) ≠ ℎ′(𝑥), ℎ(𝑥) ≠ 𝑐(𝑥))
ℙ(ℎ(𝑥) ≠ 𝑐(𝑥))

=

𝛿
⏞ℙ(ℎ(𝑥) ≠ ℎ′(𝑥)) −

≤1−𝛼′

⏞ℙ(ℎ(𝑥) ≠ ℎ′(𝑥), ℎ(𝑥) = 𝑐(𝑥))
ℙ(ℎ(𝑥) ≠ 𝑐(𝑥))⏟

1−𝛼

≥ 𝛿 − (1 − 𝛼′)
1 − 𝛼

.

∎

H. Evaluation Setup
The fingerprints we re-implemented are IPGuard, ModelDiff, SAC and 
ZestOfLIME. We based our implementation on the descriptions of the schemes 
in their respective papers and re-used part of the authors’ code when available. 
We choose two benchmarks – ModelReuse and SACBench – spanning three 
common vision datasets: Stanford Dogs [218], Oxford Flowers [219] and CIFAR10 
[220] which we abbreviate as SDog120, Flower102 and CIFAR10. We used the 
model weights released by the authors of the respective benchmarks. For each 
experiment, we report the average (and standard deviation) over five runs for each 
setting. The experiments were run on a compute cluster. The nodes were based on 
an Intel Cascade Lake 6248 processor with 16Go Nvidia Tesla V100 SXM2 GPUs.

I. Details on the computation of the True and False 
Positive Rate

The True Positive Rate and False Postive Rate are computed as follows. Consider 

a fingerprint (as defined in the problem setting section) 𝒯︀ : (𝒴︀𝒳︀, 𝒴︀𝒳︀) → {0, 1}. 

Define 𝕍 to be a set of victim models and for each victim model ℎ ∈ 𝕍, 𝕊(ℎ) is a 

set of models stolen from ℎ and 𝕌(ℎ) is a set of models unrelated to ℎ. A bench

mark is a triplet 𝔹 = (𝕍, (𝕊(ℎ))ℎ∈𝕍, (𝕌(ℎ))ℎ∈𝕍). The True and False positive Rate 
reported in the paper are computed as follows.

TPR(𝔹) = 1
|𝕍|

∑
ℎ∈𝕍

∑ℎ′∈𝕊(ℎ) 𝟙(𝒯︀(ℎ, ℎ′) = 1)
|𝕊(ℎ)|

FPR(𝔹) = 1
|𝕍|

∑
ℎ∈𝕍

∑ℎ′∈𝕌(ℎ) 𝟙(𝒯︀(ℎ, ℎ′) = 1)
|𝕌(ℎ)|

(6.1)
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Model Hyperparameters Value range

penalty None, l2LINEAR

C 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000

penalty None, l2PERCEPTRON

alpha 1e-06, 1e-05, 0.0001, 0.001, 0.01

max_depth 2, 4, 8, 16, 32, 64, 128TREE

ccp_alpha 0.001, 0.003, 0.005, 0.007, 0.01, 0.05, 
0.1, 0.2, 0.5, 0.0

max_depth 1, 2, 4, 8

n_estimators 100, 200, 500

reg_lambda 0.0, 1e-6, 1e-3, 0.1, 1.0, 1e6, 1e7

max_leaves 0

learning_rate 0.3

gamma 0.0

min_child_weight 0.0

max_delta_step 0.0

subsample 1.0

reg_alpha 0.0

GBDT

early_stopping_rounds None

Table 6.1: Value range for the hyperparameters of the models used in the 
experiments.
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