

Jade Garcia Bourrée* 234

Robust ML Auditing using Prior Knowledge <u>Augustin Godinot*2345</u> Sayan Biswas⁶ Anne-Marie Kermarrec⁶ Erwan Le Merrer³ Gilles Tredan¹ Martijn de Vos⁶

¹LAAS, CNRS, Toulouse, France ²Université de Rennes, Rennes, France ⁴IRISA/CNRS, Rennes, France ⁵PEReN, Paris, France

³Inria, Rennes, France ⁶EPFL, Lausanne, Switzerland

EPFL

What regulators ask for...

Audits require balancing between:

- ► Security: no audit gaming.
- ▶ Data access: the auditor can have access to training data and filters.
- ▶ Model access: the auditor can interact with the models via queries or have access to the code/weights.
- ▶ **Privacy**: no users' data leak.
- ▶ IP protection: no industrial secret should be leaked by the audit.

... but auditors are easily identifiable by platforms.

- Access via research APIs
- Anti-scraping IP whitelist
- Audit query patterns

- auditor identified
- auditor identified
- auditor identified

 \Rightarrow avenue for audit manipulations!

ML audit you said?

- ▶ Input space \mathcal{X} . Example: The space of all possible 1000×1000 images.
- ▶ Model $h_p \in \arg\min_{h \in \mathcal{H}} L(h, \mathcal{D})$. Example: a good old GBDT.
- ▶ Fairness metric $\mu: \mathcal{H} \rightarrow [-1,1]$. Example: demographic parity.
- ▶ Set of fair models $\mathcal{F} = \{h \in \mathcal{Y}^{\mathcal{X}} : \mu(h) = 0\}.$

Example: make sure that in average, men are not advantaged compared to women by a resume screening algorithm.

Definition 3.1 (Auditor prior). The auditor prior is a set of models $\mathcal{H}_a \subset \mathcal{Y}^{\mathcal{X}}$ that the auditor can reasonably expect to observe given her knowledge of the decision task by the platform.

Axioms The prior is reasonable and the audit is justified.

$$h_n \in \mathcal{H}_a \qquad \mathcal{H}_a \cap \mathcal{H}_a$$

Theorem 3.2 (Public priors). If the auditor's prior \mathcal{H}_a is perfectly known by the platform, a manipulative platform always appear fair and honest.

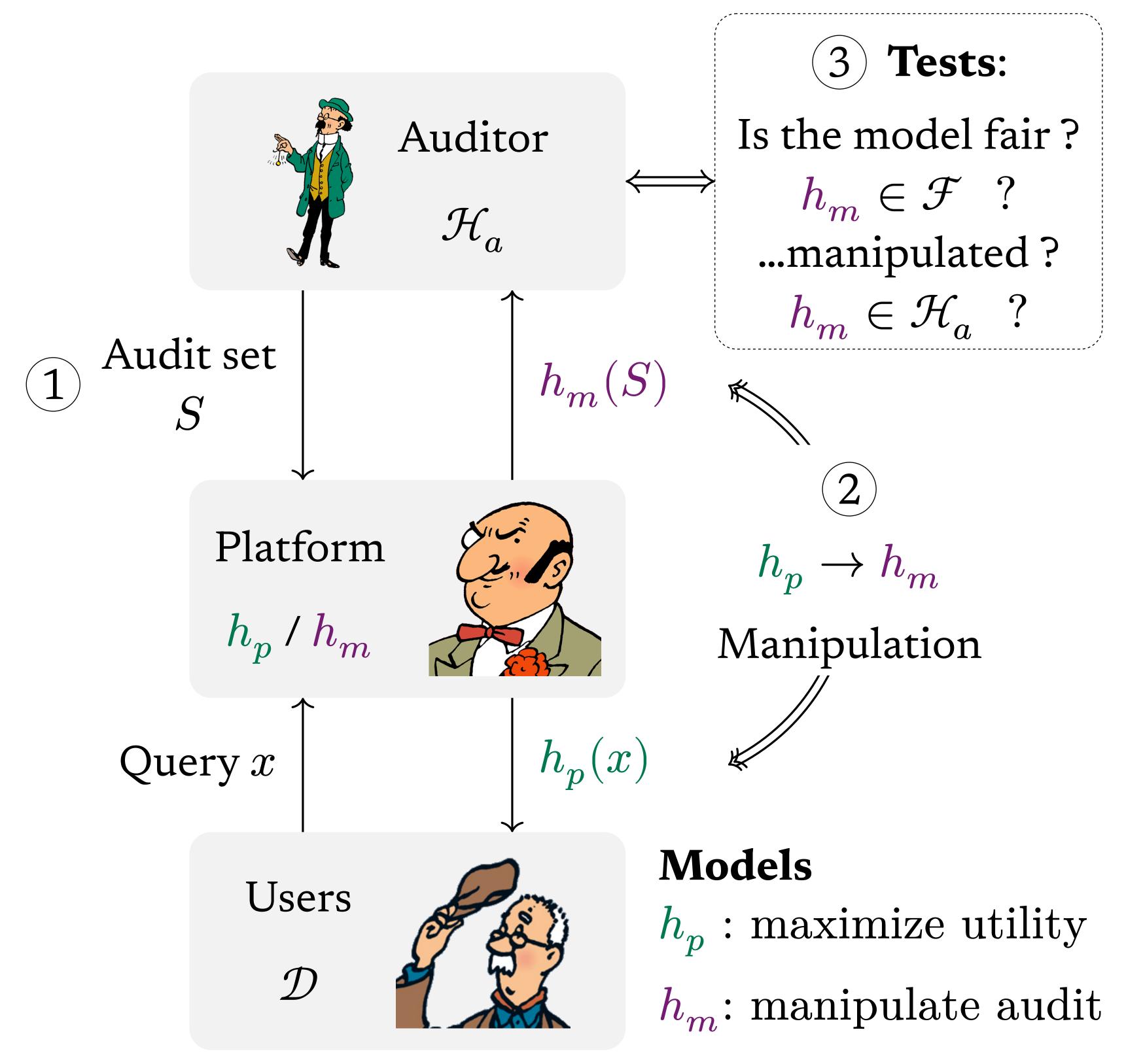
Definition (Optimal manipulation). Let h_p be the model that optimizes the platform's utility. Without knwoledge of the auditor's prior, the optimal platform manipulation is

$$h_m = \operatorname{proj}_{\mathcal{F}}(h_p) = \arg\min_{h \in \mathcal{F}} d(h, h_p)$$

ML audits are easily detectable. How to prevent fairwashing?

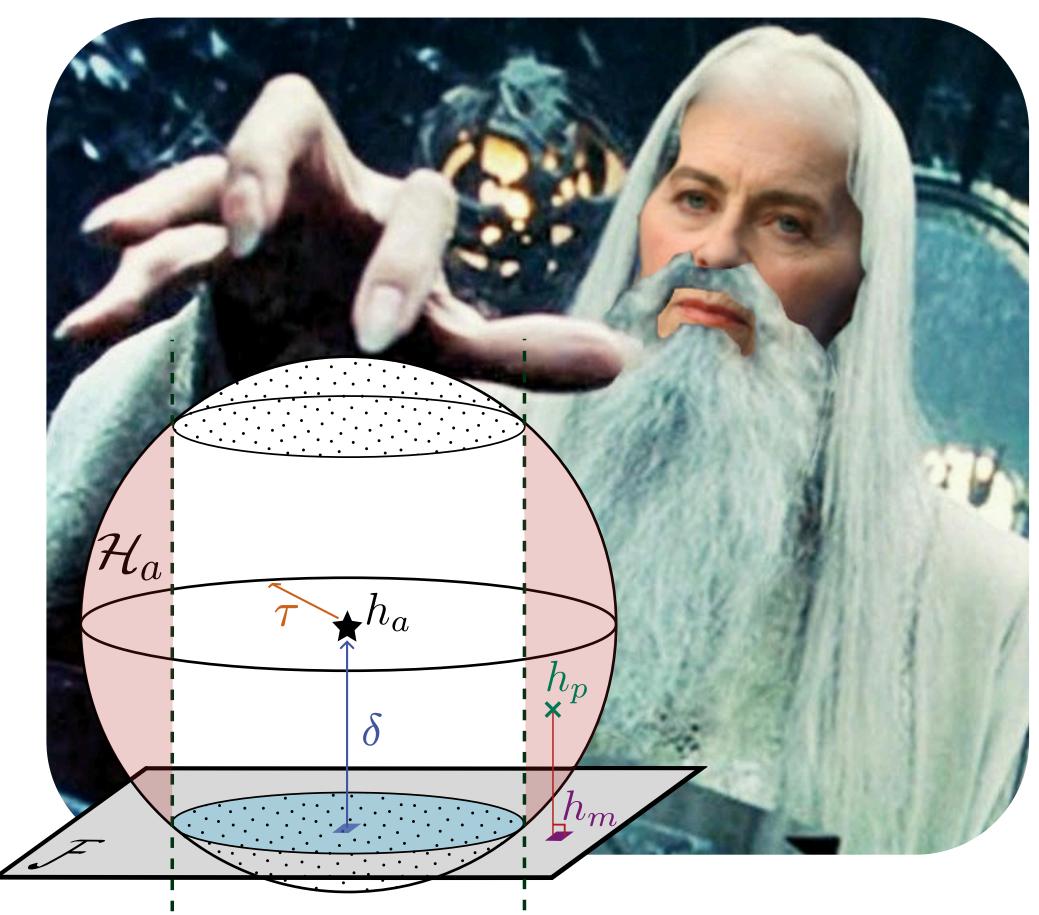
This paper: use prior knowledge (labeled data, pretrained models, public information about the platform) to detect manipulations.

The auditing game



- **Step** ① The auditor builds audit set $S \subset \mathcal{X}$ and queries the platfom.
- **Step** ② The platform manipulates the audit: $h_p(S) \to h_m(S)$.
- **Step** ③ The auditor runs the tests on collected data: $h_m \in \mathcal{F} \cap \mathcal{H}_a$?

One instance: the labeled dataset prior



Prior = labeled audit dataset D_a . $\mathcal{H}_a = \left\{ h \in \mathcal{Y}^{\mathcal{X}} : L(h, D_a) < \mathbf{\tau} \right\}$

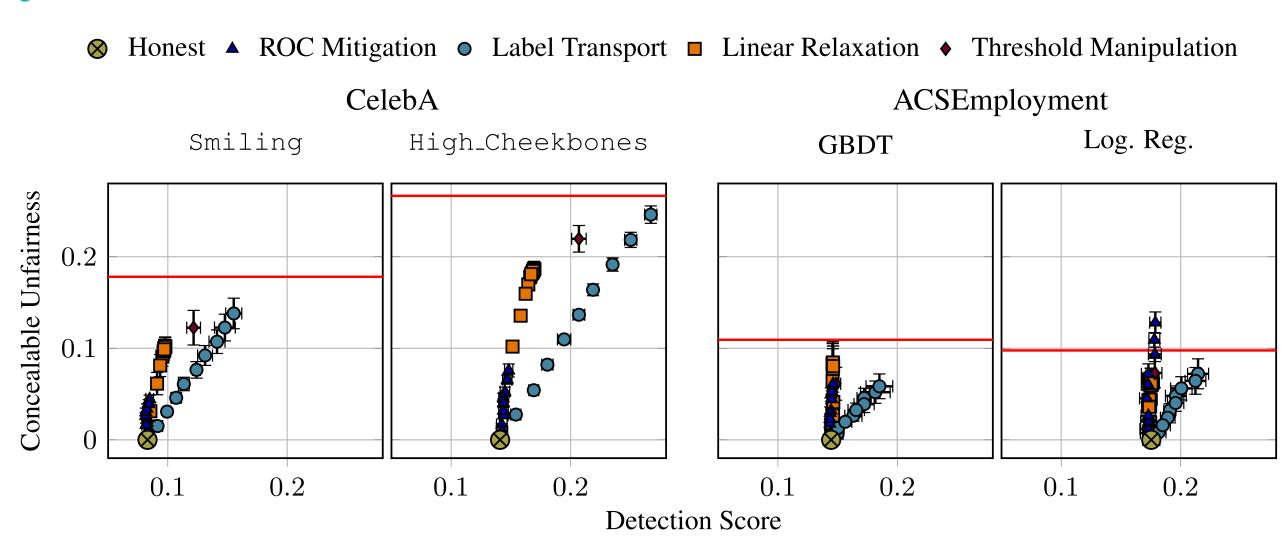
Base rate $\delta = d(h_a, \mathcal{F})$

Definition 4.2 (Detection rate). Manipulation detected if $h_m \notin \mathcal{H}_a$. $P_{\mathrm{uf}} = \mathbb{P}(h_m \notin \mathcal{H}_a \mid h_p \in \mathcal{H}_a)$

- Fair world. If $\delta = 0$, $P_{\text{nf}} = 0$
- Single solution. If $\delta = \tau$, $P_{\text{nf}} = 1$

Corollary 4.4 (Choice of δ and τ). $P_{\mathrm{uf}} \geq \frac{1}{W_{\mathrm{m}}} \frac{\delta}{\tau} \left(1 - \frac{\delta^2}{\tau^2}\right)^{\frac{n-1}{2}}$

Prevent fairwashing on CelebA and folktables?



Concealable unfairness $\Delta_{\mu}(h_p, h_m) =$ $\left|\hat{\mu}\big(h_{p},S\big) - \hat{\mu}(h_{m},S)\right|$

Detection score $Detect(h_m, S) =$

 $\sum\nolimits_{(x,y)\in S}\mathbb{1}\{h_m(x)\neq y\}$

Any good fairness repair is a good audit manipulation.

In practice, the auditor uses a statistic $\hat{\mu}(h_m, S)$ to test $h_m \in \mathcal{F}$. The platform only needs to manipulate h_p on the audit set S

$$h_m(S) \in \arg\min_h L\big(h, \big\{\big(x, h_p(x)\big) : x \in S\big\}\big)$$
 s.t. $\hat{\mu}(h, S) < \boldsymbol{\tau}$

- ▶ The platform can easily hide a lot of unfairness (if no verification).
- Lower entropy tasks: manipulations can be prevented.
- ▶ But the platform can hide in the noise.

